v = p ( 1 - d \% )
Réitigh do d.
\left\{\begin{matrix}d=-\frac{100v}{p}+100\text{, }&p\neq 0\\d\in \mathrm{R}\text{, }&v=0\text{ and }p=0\end{matrix}\right.
Réitigh do p.
\left\{\begin{matrix}p=-\frac{100v}{d-100}\text{, }&d\neq 100\\p\in \mathrm{R}\text{, }&v=0\text{ and }d=100\end{matrix}\right.
Tráth na gCeist
Linear Equation
5 fadhbanna cosúil le:
v = p ( 1 - d \% )
Roinn
Cóipeáladh go dtí an ghearrthaisce
v=p+p\left(-\frac{d}{100}\right)
Úsáid an t-airí dáileach chun p a mhéadú faoi 1-\frac{d}{100}.
v=p+\frac{-pd}{100}
Scríobh p\left(-\frac{d}{100}\right) mar chodán aonair.
p+\frac{-pd}{100}=v
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
\frac{-pd}{100}=v-p
Bain p ón dá thaobh.
-pd=100v-100p
Méadaigh an dá thaobh den chothromóid faoi 100.
\left(-p\right)d=100v-100p
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-p\right)d}{-p}=\frac{100v-100p}{-p}
Roinn an dá thaobh faoi -p.
d=\frac{100v-100p}{-p}
Má roinntear é faoi -p cuirtear an iolrúchán faoi -p ar ceal.
d=-\frac{100v}{p}+100
Roinn 100v-100p faoi -p.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}