Réitigh do θ. (complex solution)
\theta =-\frac{i\ln(\sqrt{r^{2}-1}+r)}{5}+\frac{2\pi n_{1}}{5}\text{, }n_{1}\in \mathrm{Z}
\theta =-\frac{i\ln(-\sqrt{r^{2}-1}+r)}{5}+\frac{2\pi n_{2}}{5}\text{, }n_{2}\in \mathrm{Z}
Réitigh do r.
r=\cos(5\theta )
Réitigh do θ.
\theta =\frac{\arccos(r)+2\pi n_{1}}{5}\text{, }n_{1}\in \mathrm{Z}
\theta =\frac{-\arccos(r)+2\pi n_{2}}{5}\text{, }n_{2}\in \mathrm{Z}\text{, }|r|\leq 1
Graf
Tráth na gCeist
Trigonometry
r = \cos 5 \theta
Roinn
Cóipeáladh go dtí an ghearrthaisce
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}