Scipeáil chuig an bpríomhábhar
Fachtóirigh
Tick mark Image
Luacháil
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

x^{2}-6x+4=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 4}}{2}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 4}}{2}
Cearnóg -6.
x=\frac{-\left(-6\right)±\sqrt{36-16}}{2}
Méadaigh -4 faoi 4.
x=\frac{-\left(-6\right)±\sqrt{20}}{2}
Suimigh 36 le -16?
x=\frac{-\left(-6\right)±2\sqrt{5}}{2}
Tóg fréamh chearnach 20.
x=\frac{6±2\sqrt{5}}{2}
Tá 6 urchomhairleach le -6.
x=\frac{2\sqrt{5}+6}{2}
Réitigh an chothromóid x=\frac{6±2\sqrt{5}}{2} nuair is ionann ± agus plus. Suimigh 6 le 2\sqrt{5}?
x=\sqrt{5}+3
Roinn 6+2\sqrt{5} faoi 2.
x=\frac{6-2\sqrt{5}}{2}
Réitigh an chothromóid x=\frac{6±2\sqrt{5}}{2} nuair is ionann ± agus míneas. Dealaigh 2\sqrt{5} ó 6.
x=3-\sqrt{5}
Roinn 6-2\sqrt{5} faoi 2.
x^{2}-6x+4=\left(x-\left(\sqrt{5}+3\right)\right)\left(x-\left(3-\sqrt{5}\right)\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir 3+\sqrt{5} in ionad x_{1} agus 3-\sqrt{5} in ionad x_{2}.