Réitigh do n.
n = \frac{\sqrt{409} - 1}{2} \approx 9.611874208
n=\frac{-\sqrt{409}-1}{2}\approx -10.611874208
Tráth na gCeist
Quadratic Equation
n ^ { 2 } + n - 102 = 0
Roinn
Cóipeáladh go dtí an ghearrthaisce
n^{2}+n-102=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
n=\frac{-1±\sqrt{1^{2}-4\left(-102\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, 1 in ionad b, agus -102 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\left(-102\right)}}{2}
Cearnóg 1.
n=\frac{-1±\sqrt{1+408}}{2}
Méadaigh -4 faoi -102.
n=\frac{-1±\sqrt{409}}{2}
Suimigh 1 le 408?
n=\frac{\sqrt{409}-1}{2}
Réitigh an chothromóid n=\frac{-1±\sqrt{409}}{2} nuair is ionann ± agus plus. Suimigh -1 le \sqrt{409}?
n=\frac{-\sqrt{409}-1}{2}
Réitigh an chothromóid n=\frac{-1±\sqrt{409}}{2} nuair is ionann ± agus míneas. Dealaigh \sqrt{409} ó -1.
n=\frac{\sqrt{409}-1}{2} n=\frac{-\sqrt{409}-1}{2}
Tá an chothromóid réitithe anois.
n^{2}+n-102=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
n^{2}+n-102-\left(-102\right)=-\left(-102\right)
Cuir 102 leis an dá thaobh den chothromóid.
n^{2}+n=-\left(-102\right)
Má dhealaítear -102 uaidh féin faightear 0.
n^{2}+n=102
Dealaigh -102 ó 0.
n^{2}+n+\left(\frac{1}{2}\right)^{2}=102+\left(\frac{1}{2}\right)^{2}
Roinn 1, comhéifeacht an téarma x, faoi 2 chun \frac{1}{2} a fháil. Ansin suimigh uimhir chearnach \frac{1}{2} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
n^{2}+n+\frac{1}{4}=102+\frac{1}{4}
Cearnaigh \frac{1}{2} trí uimhreoir agus ainmneoir an chodáin a chearnú.
n^{2}+n+\frac{1}{4}=\frac{409}{4}
Suimigh 102 le \frac{1}{4}?
\left(n+\frac{1}{2}\right)^{2}=\frac{409}{4}
Fachtóirigh n^{2}+n+\frac{1}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{2}\right)^{2}}=\sqrt{\frac{409}{4}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
n+\frac{1}{2}=\frac{\sqrt{409}}{2} n+\frac{1}{2}=-\frac{\sqrt{409}}{2}
Simpligh.
n=\frac{\sqrt{409}-1}{2} n=\frac{-\sqrt{409}-1}{2}
Bain \frac{1}{2} ón dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}