Réitigh do f_2.
f_{2}=-\frac{6-7x}{x^{2}}
x\neq 0
Réitigh do x. (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{49-24f_{2}}+7}{2f_{2}}\text{; }x=\frac{-\sqrt{49-24f_{2}}+7}{2f_{2}}\text{, }&f_{2}\neq 0\\x=\frac{6}{7}\text{, }&f_{2}=0\end{matrix}\right.
Réitigh do x.
\left\{\begin{matrix}x=\frac{\sqrt{49-24f_{2}}+7}{2f_{2}}\text{; }x=\frac{-\sqrt{49-24f_{2}}+7}{2f_{2}}\text{, }&f_{2}\neq 0\text{ and }f_{2}\leq \frac{49}{24}\\x=\frac{6}{7}\text{, }&f_{2}=0\end{matrix}\right.
Graf
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
f 2 x ^ { 2 } - 7 x + 6 = 0
Roinn
Cóipeáladh go dtí an ghearrthaisce
f_{2}x^{2}+6=7x
Cuir 7x leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
f_{2}x^{2}=7x-6
Bain 6 ón dá thaobh.
x^{2}f_{2}=7x-6
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{x^{2}f_{2}}{x^{2}}=\frac{7x-6}{x^{2}}
Roinn an dá thaobh faoi x^{2}.
f_{2}=\frac{7x-6}{x^{2}}
Má roinntear é faoi x^{2} cuirtear an iolrúchán faoi x^{2} ar ceal.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}