Réitigh do c.
c=\frac{7x^{3}}{4}+\frac{5m^{2}}{4}+\frac{x^{2}}{2}+\frac{m}{2}-\frac{15x}{4}-\frac{5}{2}
Réitigh do m. (complex solution)
m=\frac{\sqrt{51+20c+75x-10x^{2}-35x^{3}}-1}{5}
m=\frac{-\sqrt{51+20c+75x-10x^{2}-35x^{3}}-1}{5}
Réitigh do m.
m=\frac{\sqrt{51+20c+75x-10x^{2}-35x^{3}}-1}{5}
m=\frac{-\sqrt{51+20c+75x-10x^{2}-35x^{3}}-1}{5}\text{, }c\geq \frac{7x^{3}}{4}+\frac{x^{2}}{2}-\frac{15x}{4}-\frac{51}{20}
Graf
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
c = 2 m + 5 m ^ { 2 } - 3 c + 2 x ^ { 2 } - 15 x + 9 + 7 x ^ { 3 } - 19
Roinn
Cóipeáladh go dtí an ghearrthaisce
c=2m+5m^{2}-3c+2x^{2}-15x-10+7x^{3}
Dealaigh 19 ó 9 chun -10 a fháil.
c+3c=2m+5m^{2}+2x^{2}-15x-10+7x^{3}
Cuir 3c leis an dá thaobh.
4c=2m+5m^{2}+2x^{2}-15x-10+7x^{3}
Comhcheangail c agus 3c chun 4c a fháil.
4c=7x^{3}+2x^{2}-15x+5m^{2}+2m-10
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{4c}{4}=\frac{7x^{3}+2x^{2}-15x+5m^{2}+2m-10}{4}
Roinn an dá thaobh faoi 4.
c=\frac{7x^{3}+2x^{2}-15x+5m^{2}+2m-10}{4}
Má roinntear é faoi 4 cuirtear an iolrúchán faoi 4 ar ceal.
c=\frac{7x^{3}}{4}+\frac{5m^{2}}{4}+\frac{x^{2}}{2}+\frac{m}{2}-\frac{15x}{4}-\frac{5}{2}
Roinn 2m+5m^{2}+2x^{2}-15x-10+7x^{3} faoi 4.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}