Réitigh do a. (complex solution)
\left\{\begin{matrix}a=-\frac{b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{C}\text{, }&x=1\text{ or }\left(b=0\text{ and }x=-1\right)\end{matrix}\right.
Réitigh do b. (complex solution)
\left\{\begin{matrix}\\b=-a\left(x+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Réitigh do a.
\left\{\begin{matrix}a=-\frac{b}{x+1}\text{, }&x\neq -1\\a\in \mathrm{R}\text{, }&x=1\text{ or }\left(b=0\text{ and }x=-1\right)\end{matrix}\right.
Réitigh do b.
\left\{\begin{matrix}\\b=-a\left(x+1\right)\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
ax^{2}-a=b-bx
Bain a ón dá thaobh.
\left(x^{2}-1\right)a=b-bx
Comhcheangail na téarmaí ar fad ina bhfuil a.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
Roinn an dá thaobh faoi x^{2}-1.
a=\frac{b-bx}{x^{2}-1}
Má roinntear é faoi x^{2}-1 cuirtear an iolrúchán faoi x^{2}-1 ar ceal.
a=-\frac{b}{x+1}
Roinn b-bx faoi x^{2}-1.
a+b-bx=ax^{2}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
b-bx=ax^{2}-a
Bain a ón dá thaobh.
\left(1-x\right)b=ax^{2}-a
Comhcheangail na téarmaí ar fad ina bhfuil b.
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
Roinn an dá thaobh faoi 1-x.
b=\frac{a\left(x^{2}-1\right)}{1-x}
Má roinntear é faoi 1-x cuirtear an iolrúchán faoi 1-x ar ceal.
b=-a\left(x+1\right)
Roinn a\left(x^{2}-1\right) faoi 1-x.
ax^{2}-a=b-bx
Bain a ón dá thaobh.
\left(x^{2}-1\right)a=b-bx
Comhcheangail na téarmaí ar fad ina bhfuil a.
\frac{\left(x^{2}-1\right)a}{x^{2}-1}=\frac{b-bx}{x^{2}-1}
Roinn an dá thaobh faoi x^{2}-1.
a=\frac{b-bx}{x^{2}-1}
Má roinntear é faoi x^{2}-1 cuirtear an iolrúchán faoi x^{2}-1 ar ceal.
a=-\frac{b}{x+1}
Roinn b-bx faoi x^{2}-1.
a+b-bx=ax^{2}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
b-bx=ax^{2}-a
Bain a ón dá thaobh.
\left(1-x\right)b=ax^{2}-a
Comhcheangail na téarmaí ar fad ina bhfuil b.
\frac{\left(1-x\right)b}{1-x}=\frac{a\left(x^{2}-1\right)}{1-x}
Roinn an dá thaobh faoi 1-x.
b=\frac{a\left(x^{2}-1\right)}{1-x}
Má roinntear é faoi 1-x cuirtear an iolrúchán faoi 1-x ar ceal.
b=-a\left(x+1\right)
Roinn a\left(x^{2}-1\right) faoi 1-x.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}