Réitigh do b. (complex solution)
\left\{\begin{matrix}b=\frac{1}{a^{x}}\text{, }&x=0\text{ or }a\neq 0\\b\in \mathrm{C}\text{, }&a=0\text{ and }x\neq 0\end{matrix}\right.
Réitigh do b.
\left\{\begin{matrix}b=\frac{1}{a^{x}}\text{, }&a>0\text{ or }\left(Denominator(x)\text{bmod}2=1\text{ and }a<0\right)\\b\in \mathrm{R}\text{, }&a=0\text{ and }x>0\end{matrix}\right.
Réitigh do a. (complex solution)
\left\{\begin{matrix}a=e^{-\frac{2\pi n_{1}iRe(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}-\frac{2\pi n_{1}Im(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}+\frac{arg(\frac{1}{b})Im(x)+iarg(\frac{1}{b})Re(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\left(|b|\right)^{\frac{-Re(x)+iIm(x)}{\left(Re(x)\right)^{2}+\left(Im(x)\right)^{2}}}\text{, }n_{1}\in \mathrm{Z}\text{, }&b\neq 0\\a=0\text{, }&x\neq 0\end{matrix}\right.
Réitigh do a.
\left\{\begin{matrix}a=0\text{, }&x>0\\a=\left(\frac{1}{b}\right)^{\frac{1}{x}}\text{, }&\left(Numerator(x)\text{bmod}2=1\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(\frac{1}{b}\right)^{\frac{1}{x}}\neq 0\text{ and }b<0\right)\text{ or }\left(\left(\frac{1}{b}\right)^{\frac{1}{x}}>0\text{ and }x\neq 0\text{ and }b>0\right)\text{ or }\left(\left(\frac{1}{b}\right)^{\frac{1}{x}}<0\text{ and }x\neq 0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }b>0\right)\\a=-\left(\frac{1}{b}\right)^{\frac{1}{x}}\text{, }&\left(b<0\text{ and }Numerator(x)\text{bmod}2=1\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\text{ and }\left(\frac{1}{b}\right)^{\frac{1}{x}}\neq 0\right)\text{ or }\left(b>0\text{ and }x\neq 0\text{ and }\left(\frac{1}{b}\right)^{\frac{1}{x}}<0\text{ and }Numerator(x)\text{bmod}2=0\right)\text{ or }\left(b>0\text{ and }x\neq 0\text{ and }\left(\frac{1}{b}\right)^{\frac{1}{x}}>0\text{ and }Numerator(x)\text{bmod}2=0\text{ and }Denominator(x)\text{bmod}2=1\right)\\a\neq 0\text{, }&b=1\text{ and }x=0\end{matrix}\right.
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
ba^{2x}=a^{x}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
a^{2x}b=a^{x}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{a^{2x}b}{a^{2x}}=\frac{a^{x}}{a^{2x}}
Roinn an dá thaobh faoi a^{2x}.
b=\frac{a^{x}}{a^{2x}}
Má roinntear é faoi a^{2x} cuirtear an iolrúchán faoi a^{2x} ar ceal.
b=\frac{1}{a^{x}}
Roinn a^{x} faoi a^{2x}.
ba^{2x}=a^{x}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
a^{2x}b=a^{x}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{a^{2x}b}{a^{2x}}=\frac{a^{x}}{a^{2x}}
Roinn an dá thaobh faoi a^{2x}.
b=\frac{a^{x}}{a^{2x}}
Má roinntear é faoi a^{2x} cuirtear an iolrúchán faoi a^{2x} ar ceal.
b=\frac{1}{a^{x}}
Roinn a^{x} faoi a^{2x}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}