Réitigh do G.
G=\frac{M}{500}+\frac{Q_{1}}{15}+\frac{16P_{A}}{15}-\frac{N}{10}-\frac{2P_{B}}{5}-40
Réitigh do M.
M=-\frac{100Q_{1}}{3}-\frac{1600P_{A}}{3}+50N+200P_{B}+500G+20000
Tráth na gCeist
Linear Equation
5 fadhbanna cosúil le:
Q _ { 1 } = 600 - 4 P _ { A } - 0.03 M - 12 P _ { A } + 15 G + 6 P _ { B } + 1.5 N
Roinn
Cóipeáladh go dtí an ghearrthaisce
Q_{1}=600-16P_{A}-0.03M+15G+6P_{B}+1.5N
Comhcheangail -4P_{A} agus -12P_{A} chun -16P_{A} a fháil.
600-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}-600
Bain 600 ón dá thaobh.
-0.03M+15G+6P_{B}+1.5N=Q_{1}-600+16P_{A}
Cuir 16P_{A} leis an dá thaobh.
15G+6P_{B}+1.5N=Q_{1}-600+16P_{A}+0.03M
Cuir 0.03M leis an dá thaobh.
15G+1.5N=Q_{1}-600+16P_{A}+0.03M-6P_{B}
Bain 6P_{B} ón dá thaobh.
15G=Q_{1}-600+16P_{A}+0.03M-6P_{B}-1.5N
Bain 1.5N ón dá thaobh.
15G=\frac{3M}{100}-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-600
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{15G}{15}=\frac{\frac{3M}{100}-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-600}{15}
Roinn an dá thaobh faoi 15.
G=\frac{\frac{3M}{100}-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-600}{15}
Má roinntear é faoi 15 cuirtear an iolrúchán faoi 15 ar ceal.
G=\frac{M}{500}+\frac{Q_{1}}{15}+\frac{16P_{A}}{15}-\frac{N}{10}-\frac{2P_{B}}{5}-40
Roinn Q_{1}-600+16P_{A}+\frac{3M}{100}-6P_{B}-\frac{3N}{2} faoi 15.
Q_{1}=600-16P_{A}-0.03M+15G+6P_{B}+1.5N
Comhcheangail -4P_{A} agus -12P_{A} chun -16P_{A} a fháil.
600-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
-16P_{A}-0.03M+15G+6P_{B}+1.5N=Q_{1}-600
Bain 600 ón dá thaobh.
-0.03M+15G+6P_{B}+1.5N=Q_{1}-600+16P_{A}
Cuir 16P_{A} leis an dá thaobh.
-0.03M+6P_{B}+1.5N=Q_{1}-600+16P_{A}-15G
Bain 15G ón dá thaobh.
-0.03M+1.5N=Q_{1}-600+16P_{A}-15G-6P_{B}
Bain 6P_{B} ón dá thaobh.
-0.03M=Q_{1}-600+16P_{A}-15G-6P_{B}-1.5N
Bain 1.5N ón dá thaobh.
-0.03M=-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-15G-600
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{-0.03M}{-0.03}=\frac{-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-15G-600}{-0.03}
Roinn an dá thaobh den chothromóid faoi -0.03, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
M=\frac{-\frac{3N}{2}+Q_{1}+16P_{A}-6P_{B}-15G-600}{-0.03}
Má roinntear é faoi -0.03 cuirtear an iolrúchán faoi -0.03 ar ceal.
M=-\frac{100Q_{1}}{3}-\frac{1600P_{A}}{3}+50N+200P_{B}+500G+20000
Roinn Q_{1}-600+16P_{A}-15G-6P_{B}-\frac{3N}{2} faoi -0.03 trí Q_{1}-600+16P_{A}-15G-6P_{B}-\frac{3N}{2} a mhéadú faoi dheilín -0.03.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}