Réitigh do P. (complex solution)
\left\{\begin{matrix}P=-\frac{20-60y}{13rx}\text{, }&x\neq 0\text{ and }r\neq 0\\P\in \mathrm{C}\text{, }&\left(r=0\text{ or }x=0\right)\text{ and }y=\frac{1}{3}\end{matrix}\right.
Réitigh do r. (complex solution)
\left\{\begin{matrix}r=-\frac{20-60y}{13Px}\text{, }&x\neq 0\text{ and }P\neq 0\\r\in \mathrm{C}\text{, }&\left(P=0\text{ or }x=0\right)\text{ and }y=\frac{1}{3}\end{matrix}\right.
Réitigh do P.
\left\{\begin{matrix}P=-\frac{20-60y}{13rx}\text{, }&x\neq 0\text{ and }r\neq 0\\P\in \mathrm{R}\text{, }&\left(r=0\text{ or }x=0\right)\text{ and }y=\frac{1}{3}\end{matrix}\right.
Réitigh do r.
\left\{\begin{matrix}r=-\frac{20-60y}{13Px}\text{, }&x\neq 0\text{ and }P\neq 0\\r\in \mathrm{R}\text{, }&\left(P=0\text{ or }x=0\right)\text{ and }y=\frac{1}{3}\end{matrix}\right.
Roinn
Cóipeáladh go dtí an ghearrthaisce
P\times 1.3rx-6y+2=0
Méadaigh an dá thaobh den chothromóid faoi 2.
P\times 1.3rx+2=6y
Cuir 6y leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
P\times 1.3rx=6y-2
Bain 2 ón dá thaobh.
\frac{13rx}{10}P=6y-2
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{10\times \frac{13rx}{10}P}{13rx}=\frac{10\left(6y-2\right)}{13rx}
Roinn an dá thaobh faoi 1.3rx.
P=\frac{10\left(6y-2\right)}{13rx}
Má roinntear é faoi 1.3rx cuirtear an iolrúchán faoi 1.3rx ar ceal.
P=\frac{20\left(3y-1\right)}{13rx}
Roinn 6y-2 faoi 1.3rx.
P\times 1.3rx-6y+2=0
Méadaigh an dá thaobh den chothromóid faoi 2.
P\times 1.3rx+2=6y
Cuir 6y leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
P\times 1.3rx=6y-2
Bain 2 ón dá thaobh.
\frac{13Px}{10}r=6y-2
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{10\times \frac{13Px}{10}r}{13Px}=\frac{10\left(6y-2\right)}{13Px}
Roinn an dá thaobh faoi 1.3Px.
r=\frac{10\left(6y-2\right)}{13Px}
Má roinntear é faoi 1.3Px cuirtear an iolrúchán faoi 1.3Px ar ceal.
r=\frac{20\left(3y-1\right)}{13Px}
Roinn 6y-2 faoi 1.3Px.
P\times 1.3rx-6y+2=0
Méadaigh an dá thaobh den chothromóid faoi 2.
P\times 1.3rx+2=6y
Cuir 6y leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
P\times 1.3rx=6y-2
Bain 2 ón dá thaobh.
\frac{13rx}{10}P=6y-2
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{10\times \frac{13rx}{10}P}{13rx}=\frac{10\left(6y-2\right)}{13rx}
Roinn an dá thaobh faoi 1.3rx.
P=\frac{10\left(6y-2\right)}{13rx}
Má roinntear é faoi 1.3rx cuirtear an iolrúchán faoi 1.3rx ar ceal.
P=\frac{20\left(3y-1\right)}{13rx}
Roinn 6y-2 faoi 1.3rx.
P\times 1.3rx-6y+2=0
Méadaigh an dá thaobh den chothromóid faoi 2.
P\times 1.3rx+2=6y
Cuir 6y leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
P\times 1.3rx=6y-2
Bain 2 ón dá thaobh.
\frac{13Px}{10}r=6y-2
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{10\times \frac{13Px}{10}r}{13Px}=\frac{10\left(6y-2\right)}{13Px}
Roinn an dá thaobh faoi 1.3Px.
r=\frac{10\left(6y-2\right)}{13Px}
Má roinntear é faoi 1.3Px cuirtear an iolrúchán faoi 1.3Px ar ceal.
r=\frac{20\left(3y-1\right)}{13Px}
Roinn 6y-2 faoi 1.3Px.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}