Scipeáil chuig an bpríomhábhar
Réitigh do B. (complex solution)
Tick mark Image
Réitigh do S. (complex solution)
Tick mark Image
Réitigh do B.
Tick mark Image
Réitigh do S.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(0.04-x\right)^{2} a leathnú.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(0.05-x\right)^{2} a leathnú.
SB=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{SB}{S}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
Roinn an dá thaobh faoi S.
B=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
Má roinntear é faoi S cuirtear an iolrúchán faoi S ar ceal.
B=\frac{16\left(25x-1\right)^{2}}{25S\left(20x-1\right)^{2}}
Roinn \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} faoi S.
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(0.04-x\right)^{2} a leathnú.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(0.05-x\right)^{2} a leathnú.
BS=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{BS}{B}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
Roinn an dá thaobh faoi B.
S=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
Má roinntear é faoi B cuirtear an iolrúchán faoi B ar ceal.
S=\frac{16\left(25x-1\right)^{2}}{25B\left(20x-1\right)^{2}}
Roinn \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} faoi B.
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(0.04-x\right)^{2} a leathnú.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(0.05-x\right)^{2} a leathnú.
SB=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{SB}{S}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
Roinn an dá thaobh faoi S.
B=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}S}
Má roinntear é faoi S cuirtear an iolrúchán faoi S ar ceal.
B=\frac{16\left(25x-1\right)^{2}}{25S\left(20x-1\right)^{2}}
Roinn \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} faoi S.
BS=\frac{0.0016-0.08x+x^{2}}{\left(0.05-x\right)^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(0.04-x\right)^{2} a leathnú.
BS=\frac{0.0016-0.08x+x^{2}}{0.0025-0.1x+x^{2}}
Úsáid an teoirim dhéthéarmach \left(a-b\right)^{2}=a^{2}-2ab+b^{2} chun \left(0.05-x\right)^{2} a leathnú.
BS=\frac{x^{2}-\frac{2x}{25}+0.0016}{x^{2}-\frac{x}{10}+0.0025}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{BS}{B}=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
Roinn an dá thaobh faoi B.
S=\frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}B}
Má roinntear é faoi B cuirtear an iolrúchán faoi B ar ceal.
S=\frac{16\left(25x-1\right)^{2}}{25B\left(20x-1\right)^{2}}
Roinn \frac{16\left(25x-1\right)^{2}}{25\left(20x-1\right)^{2}} faoi B.