Scipeáil chuig an bpríomhábhar
Réitigh do A.
Tick mark Image
Réitigh do P.
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

A=P\left(1+\frac{1}{100}i\right)^{2}
Roinn i faoi 100 chun \frac{1}{100}i a fháil.
A=P\left(\frac{9999}{10000}+\frac{1}{50}i\right)
Ríomh cumhacht 1+\frac{1}{100}i de 2 agus faigh \frac{9999}{10000}+\frac{1}{50}i.
A=P\left(1+\frac{1}{100}i\right)^{2}
Roinn i faoi 100 chun \frac{1}{100}i a fháil.
A=P\left(\frac{9999}{10000}+\frac{1}{50}i\right)
Ríomh cumhacht 1+\frac{1}{100}i de 2 agus faigh \frac{9999}{10000}+\frac{1}{50}i.
P\left(\frac{9999}{10000}+\frac{1}{50}i\right)=A
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
\left(\frac{9999}{10000}+\frac{1}{50}i\right)P=A
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(\frac{9999}{10000}+\frac{1}{50}i\right)P}{\frac{9999}{10000}+\frac{1}{50}i}=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
Roinn an dá thaobh faoi \frac{9999}{10000}+\frac{1}{50}i.
P=\frac{A}{\frac{9999}{10000}+\frac{1}{50}i}
Má roinntear é faoi \frac{9999}{10000}+\frac{1}{50}i cuirtear an iolrúchán faoi \frac{9999}{10000}+\frac{1}{50}i ar ceal.
P=\left(\frac{99990000}{100020001}-\frac{2000000}{100020001}i\right)A
Roinn A faoi \frac{9999}{10000}+\frac{1}{50}i.