Fachtóirigh
-\left(A-2\right)\left(A+1\right)
Luacháil
-\left(A-2\right)\left(A+1\right)
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
A + 2 - A ^ { 2 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
-A^{2}+A+2
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=1 ab=-2=-2
Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar -A^{2}+aA+bA+2 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
a=2 b=-1
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Is é an péire sin réiteach an chórais.
\left(-A^{2}+2A\right)+\left(-A+2\right)
Athscríobh -A^{2}+A+2 mar \left(-A^{2}+2A\right)+\left(-A+2\right).
-A\left(A-2\right)-\left(A-2\right)
Fág -A as an áireamh sa chead ghrúpa agus -1 sa dara grúpa.
\left(A-2\right)\left(-A-1\right)
Fág an téarma coitianta A-2 as an áireamh ag úsáid airí dháiligh.
-A^{2}+A+2=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
A=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
A=\frac{-1±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
Cearnóg 1.
A=\frac{-1±\sqrt{1+4\times 2}}{2\left(-1\right)}
Méadaigh -4 faoi -1.
A=\frac{-1±\sqrt{1+8}}{2\left(-1\right)}
Méadaigh 4 faoi 2.
A=\frac{-1±\sqrt{9}}{2\left(-1\right)}
Suimigh 1 le 8?
A=\frac{-1±3}{2\left(-1\right)}
Tóg fréamh chearnach 9.
A=\frac{-1±3}{-2}
Méadaigh 2 faoi -1.
A=\frac{2}{-2}
Réitigh an chothromóid A=\frac{-1±3}{-2} nuair is ionann ± agus plus. Suimigh -1 le 3?
A=-1
Roinn 2 faoi -2.
A=-\frac{4}{-2}
Réitigh an chothromóid A=\frac{-1±3}{-2} nuair is ionann ± agus míneas. Dealaigh 3 ó -1.
A=2
Roinn -4 faoi -2.
-A^{2}+A+2=-\left(A-\left(-1\right)\right)\left(A-2\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir -1 in ionad x_{1} agus 2 in ionad x_{2}.
-A^{2}+A+2=-\left(A+1\right)\left(A-2\right)
Simpligh na sloinn uile a bhfuil an fhoirm p-\left(-q\right) go p+q orthu.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}