Réitigh do x.
x=\frac{200\ln(2)-50\ln(13)}{3}\approx 3.46065608
Réitigh do x. (complex solution)
x=\frac{i\times 100\pi n_{1}}{3}+\frac{200\ln(2)}{3}-\frac{50\ln(13)}{3}
n_{1}\in \mathrm{Z}
Graf
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
8000=6500 { e }^{ .06x }
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{8000}{6500}=e^{0.06x}
Roinn an dá thaobh faoi 6500.
\frac{16}{13}=e^{0.06x}
Laghdaigh an codán \frac{8000}{6500} chuig na téarmaí is ísle trí 500 a bhaint agus a chealú.
e^{0.06x}=\frac{16}{13}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
\log(e^{0.06x})=\log(\frac{16}{13})
Ghlac logartam an dá thaobh den chothromóid.
0.06x\log(e)=\log(\frac{16}{13})
Is ionann logartam uimhreacha a ardaítear go cumhacht agus an chumhacht méadaithe faoi logartam na huimhreach.
0.06x=\frac{\log(\frac{16}{13})}{\log(e)}
Roinn an dá thaobh faoi \log(e).
0.06x=\log_{e}\left(\frac{16}{13}\right)
Leis an bhfoirmle athrú boinn \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{16}{13})}{0.06}
Roinn an dá thaobh den chothromóid faoi 0.06, arb ionann é sin agus an dá thaobh a mhéadú faoi dheilín an chodáin.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}