Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

8x^{2}-8x=0
Úsáid an t-airí dáileach chun 8x a mhéadú faoi x-1.
x\left(8x-8\right)=0
Fág x as an áireamh.
x=0 x=1
Réitigh x=0 agus 8x-8=0 chun réitigh cothromóide a fháil.
8x^{2}-8x=0
Úsáid an t-airí dáileach chun 8x a mhéadú faoi x-1.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 8}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 8 in ionad a, -8 in ionad b, agus 0 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±8}{2\times 8}
Tóg fréamh chearnach \left(-8\right)^{2}.
x=\frac{8±8}{2\times 8}
Tá 8 urchomhairleach le -8.
x=\frac{8±8}{16}
Méadaigh 2 faoi 8.
x=\frac{16}{16}
Réitigh an chothromóid x=\frac{8±8}{16} nuair is ionann ± agus plus. Suimigh 8 le 8?
x=1
Roinn 16 faoi 16.
x=\frac{0}{16}
Réitigh an chothromóid x=\frac{8±8}{16} nuair is ionann ± agus míneas. Dealaigh 8 ó 8.
x=0
Roinn 0 faoi 16.
x=1 x=0
Tá an chothromóid réitithe anois.
8x^{2}-8x=0
Úsáid an t-airí dáileach chun 8x a mhéadú faoi x-1.
\frac{8x^{2}-8x}{8}=\frac{0}{8}
Roinn an dá thaobh faoi 8.
x^{2}+\left(-\frac{8}{8}\right)x=\frac{0}{8}
Má roinntear é faoi 8 cuirtear an iolrúchán faoi 8 ar ceal.
x^{2}-x=\frac{0}{8}
Roinn -8 faoi 8.
x^{2}-x=0
Roinn 0 faoi 8.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Roinn -1, comhéifeacht an téarma x, faoi 2 chun -\frac{1}{2} a fháil. Ansin suimigh uimhir chearnach -\frac{1}{2} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Cearnaigh -\frac{1}{2} trí uimhreoir agus ainmneoir an chodáin a chearnú.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Fachtóirigh x^{2}-x+\frac{1}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Simpligh.
x=1 x=0
Cuir \frac{1}{2} leis an dá thaobh den chothromóid.