Réitigh do n.
n=\frac{\sqrt{552524359497401758}}{100000000}-7.5\approx -0.066801768
n=-\frac{\sqrt{552524359497401758}}{100000000}-7.5\approx -14.933198232
Roinn
Cóipeáladh go dtí an ghearrthaisce
75 n = 68 n - n ^ {2} + -0.9975640502598242 - 8 n
Evaluate trigonometric functions in the problem
75n=60n-n^{2}-0.9975640502598242
Comhcheangail 68n agus -8n chun 60n a fháil.
75n-60n=-n^{2}-0.9975640502598242
Bain 60n ón dá thaobh.
15n=-n^{2}-0.9975640502598242
Comhcheangail 75n agus -60n chun 15n a fháil.
15n+n^{2}=-0.9975640502598242
Cuir n^{2} leis an dá thaobh.
15n+n^{2}+0.9975640502598242=0
Cuir 0.9975640502598242 leis an dá thaobh.
n^{2}+15n+0.9975640502598242=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
n=\frac{-15±\sqrt{15^{2}-4\times 0.9975640502598242}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, 15 in ionad b, agus 0.9975640502598242 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-15±\sqrt{225-4\times 0.9975640502598242}}{2}
Cearnóg 15.
n=\frac{-15±\sqrt{225-3.9902562010392968}}{2}
Méadaigh -4 faoi 0.9975640502598242.
n=\frac{-15±\sqrt{221.0097437989607032}}{2}
Suimigh 225 le -3.9902562010392968?
n=\frac{-15±\frac{\sqrt{552524359497401758}}{50000000}}{2}
Tóg fréamh chearnach 221.0097437989607032.
n=\frac{\frac{\sqrt{552524359497401758}}{50000000}-15}{2}
Réitigh an chothromóid n=\frac{-15±\frac{\sqrt{552524359497401758}}{50000000}}{2} nuair is ionann ± agus plus. Suimigh -15 le \frac{\sqrt{552524359497401758}}{50000000}?
n=\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2}
Roinn -15+\frac{\sqrt{552524359497401758}}{50000000} faoi 2.
n=\frac{-\frac{\sqrt{552524359497401758}}{50000000}-15}{2}
Réitigh an chothromóid n=\frac{-15±\frac{\sqrt{552524359497401758}}{50000000}}{2} nuair is ionann ± agus míneas. Dealaigh \frac{\sqrt{552524359497401758}}{50000000} ó -15.
n=-\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2}
Roinn -15-\frac{\sqrt{552524359497401758}}{50000000} faoi 2.
n=\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2} n=-\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2}
Tá an chothromóid réitithe anois.
75 n = 68 n - n ^ {2} + -0.9975640502598242 - 8 n
Evaluate trigonometric functions in the problem
75n=60n-n^{2}-0.9975640502598242
Comhcheangail 68n agus -8n chun 60n a fháil.
75n-60n=-n^{2}-0.9975640502598242
Bain 60n ón dá thaobh.
15n=-n^{2}-0.9975640502598242
Comhcheangail 75n agus -60n chun 15n a fháil.
15n+n^{2}=-0.9975640502598242
Cuir n^{2} leis an dá thaobh.
n^{2}+15n=-0.9975640502598242
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
n^{2}+15n+\left(\frac{15}{2}\right)^{2}=-0.9975640502598242+\left(\frac{15}{2}\right)^{2}
Roinn 15, comhéifeacht an téarma x, faoi 2 chun \frac{15}{2} a fháil. Ansin suimigh uimhir chearnach \frac{15}{2} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
n^{2}+15n+\frac{225}{4}=-0.9975640502598242+\frac{225}{4}
Cearnaigh \frac{15}{2} trí uimhreoir agus ainmneoir an chodáin a chearnú.
n^{2}+15n+\frac{225}{4}=\frac{276262179748700879}{5000000000000000}
Suimigh -0.9975640502598242 le \frac{225}{4} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
\left(n+\frac{15}{2}\right)^{2}=\frac{276262179748700879}{5000000000000000}
Fachtóirigh n^{2}+15n+\frac{225}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{15}{2}\right)^{2}}=\sqrt{\frac{276262179748700879}{5000000000000000}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
n+\frac{15}{2}=\frac{\sqrt{552524359497401758}}{100000000} n+\frac{15}{2}=-\frac{\sqrt{552524359497401758}}{100000000}
Simpligh.
n=\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2} n=-\frac{\sqrt{552524359497401758}}{100000000}-\frac{15}{2}
Bain \frac{15}{2} ón dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}