Scipeáil chuig an bpríomhábhar
Fachtóirigh
Tick mark Image
Luacháil
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a+b=-32 ab=7\left(-15\right)=-105
Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar 7x^{2}+ax+bx-15 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,-105 3,-35 5,-21 7,-15
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -105.
1-105=-104 3-35=-32 5-21=-16 7-15=-8
Áirigh an tsuim do gach péire.
a=-35 b=3
Is é an réiteach ná an péire a thugann an tsuim -32.
\left(7x^{2}-35x\right)+\left(3x-15\right)
Athscríobh 7x^{2}-32x-15 mar \left(7x^{2}-35x\right)+\left(3x-15\right).
7x\left(x-5\right)+3\left(x-5\right)
Fág 7x as an áireamh sa chead ghrúpa agus 3 sa dara grúpa.
\left(x-5\right)\left(7x+3\right)
Fág an téarma coitianta x-5 as an áireamh ag úsáid airí dháiligh.
7x^{2}-32x-15=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 7\left(-15\right)}}{2\times 7}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 7\left(-15\right)}}{2\times 7}
Cearnóg -32.
x=\frac{-\left(-32\right)±\sqrt{1024-28\left(-15\right)}}{2\times 7}
Méadaigh -4 faoi 7.
x=\frac{-\left(-32\right)±\sqrt{1024+420}}{2\times 7}
Méadaigh -28 faoi -15.
x=\frac{-\left(-32\right)±\sqrt{1444}}{2\times 7}
Suimigh 1024 le 420?
x=\frac{-\left(-32\right)±38}{2\times 7}
Tóg fréamh chearnach 1444.
x=\frac{32±38}{2\times 7}
Tá 32 urchomhairleach le -32.
x=\frac{32±38}{14}
Méadaigh 2 faoi 7.
x=\frac{70}{14}
Réitigh an chothromóid x=\frac{32±38}{14} nuair is ionann ± agus plus. Suimigh 32 le 38?
x=5
Roinn 70 faoi 14.
x=-\frac{6}{14}
Réitigh an chothromóid x=\frac{32±38}{14} nuair is ionann ± agus míneas. Dealaigh 38 ó 32.
x=-\frac{3}{7}
Laghdaigh an codán \frac{-6}{14} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
7x^{2}-32x-15=7\left(x-5\right)\left(x-\left(-\frac{3}{7}\right)\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir 5 in ionad x_{1} agus -\frac{3}{7} in ionad x_{2}.
7x^{2}-32x-15=7\left(x-5\right)\left(x+\frac{3}{7}\right)
Simpligh na sloinn uile a bhfuil an fhoirm p-\left(-q\right) go p+q orthu.
7x^{2}-32x-15=7\left(x-5\right)\times \frac{7x+3}{7}
Suimigh \frac{3}{7} le x trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
7x^{2}-32x-15=\left(x-5\right)\left(7x+3\right)
Cealaigh an comhfhachtóir 7 is mó in 7 agus 7.