Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

6794+x^{2}-165x=0
Bain 165x ón dá thaobh.
x^{2}-165x+6794=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-165\right)±\sqrt{\left(-165\right)^{2}-4\times 6794}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, -165 in ionad b, agus 6794 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-165\right)±\sqrt{27225-4\times 6794}}{2}
Cearnóg -165.
x=\frac{-\left(-165\right)±\sqrt{27225-27176}}{2}
Méadaigh -4 faoi 6794.
x=\frac{-\left(-165\right)±\sqrt{49}}{2}
Suimigh 27225 le -27176?
x=\frac{-\left(-165\right)±7}{2}
Tóg fréamh chearnach 49.
x=\frac{165±7}{2}
Tá 165 urchomhairleach le -165.
x=\frac{172}{2}
Réitigh an chothromóid x=\frac{165±7}{2} nuair is ionann ± agus plus. Suimigh 165 le 7?
x=86
Roinn 172 faoi 2.
x=\frac{158}{2}
Réitigh an chothromóid x=\frac{165±7}{2} nuair is ionann ± agus míneas. Dealaigh 7 ó 165.
x=79
Roinn 158 faoi 2.
x=86 x=79
Tá an chothromóid réitithe anois.
6794+x^{2}-165x=0
Bain 165x ón dá thaobh.
x^{2}-165x=-6794
Bain 6794 ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
x^{2}-165x+\left(-\frac{165}{2}\right)^{2}=-6794+\left(-\frac{165}{2}\right)^{2}
Roinn -165, comhéifeacht an téarma x, faoi 2 chun -\frac{165}{2} a fháil. Ansin suimigh uimhir chearnach -\frac{165}{2} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-165x+\frac{27225}{4}=-6794+\frac{27225}{4}
Cearnaigh -\frac{165}{2} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-165x+\frac{27225}{4}=\frac{49}{4}
Suimigh -6794 le \frac{27225}{4}?
\left(x-\frac{165}{2}\right)^{2}=\frac{49}{4}
Fachtóirigh x^{2}-165x+\frac{27225}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{165}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{165}{2}=\frac{7}{2} x-\frac{165}{2}=-\frac{7}{2}
Simpligh.
x=86 x=79
Cuir \frac{165}{2} leis an dá thaobh den chothromóid.