Réitigh do y.
y=\frac{9^{x}-9\times 3^{x}+1}{6}
Réitigh do x. (complex solution)
\left\{\begin{matrix}\\x=\log_{3}\left(\frac{\sqrt{24y+77}+9}{2}\right)+\frac{2\pi n_{2}i}{\ln(3)}\text{, }n_{2}\in \mathrm{Z}\text{, }&\text{unconditionally}\\x=\log_{3}\left(\frac{-\sqrt{24y+77}+9}{2}\right)+\frac{2\pi n_{1}i}{\ln(3)}\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq \frac{1}{6}\end{matrix}\right.
Réitigh do x.
\left\{\begin{matrix}x=\log_{3}\left(\frac{\sqrt{24y+77}+9}{2}\right)\text{, }&y\geq -\frac{77}{24}\\x=\log_{3}\left(\frac{-\sqrt{24y+77}+9}{2}\right)\text{, }&y\geq -\frac{77}{24}\text{ and }y<\frac{1}{6}\end{matrix}\right.
Graf
Tráth na gCeist
Algebra
6 y = 9 ^ { x } - 3 ^ { x + 2 } + 1
Roinn
Cóipeáladh go dtí an ghearrthaisce
6y=-3^{x+2}+9^{x}+1
Athordaigh na téarmaí.
6y=1+9^{x}-3^{x+2}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{6y}{6}=\frac{9^{x}-9\times 3^{x}+1}{6}
Roinn an dá thaobh faoi 6.
y=\frac{9^{x}-9\times 3^{x}+1}{6}
Má roinntear é faoi 6 cuirtear an iolrúchán faoi 6 ar ceal.
y=\frac{9^{x}}{6}-\frac{3\times 3^{x}}{2}+\frac{1}{6}
Roinn -9\times 3^{x}+9^{x}+1 faoi 6.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}