Réitigh do p. (complex solution)
\left\{\begin{matrix}p=\frac{3\left(2x+1\right)}{x\left(x+5\right)n^{2}}\text{, }&n\neq 0\text{ and }x\neq 0\text{ and }x\neq -5\\p\in \mathrm{C}\text{, }&x=-\frac{1}{2}\text{ and }n=0\end{matrix}\right.
Réitigh do p.
\left\{\begin{matrix}p=\frac{3\left(2x+1\right)}{x\left(x+5\right)n^{2}}\text{, }&n\neq 0\text{ and }x\neq 0\text{ and }x\neq -5\\p\in \mathrm{R}\text{, }&x=-\frac{1}{2}\text{ and }n=0\end{matrix}\right.
Réitigh do n. (complex solution)
\left\{\begin{matrix}n=-ip^{-\frac{1}{2}}x^{-\frac{1}{2}}\left(x+5\right)^{-\frac{1}{2}}\sqrt{-6x-3}\text{; }n=ip^{-\frac{1}{2}}x^{-\frac{1}{2}}\left(x+5\right)^{-\frac{1}{2}}\sqrt{-6x-3}\text{, }&p\neq 0\text{ and }x\neq 0\text{ and }x\neq -5\\n\in \mathrm{C}\text{, }&x=-\frac{1}{2}\text{ and }p=0\end{matrix}\right.
Réitigh do n.
\left\{\begin{matrix}n=\sqrt{\frac{3\left(2x+1\right)}{px\left(x+5\right)}}\text{; }n=-\sqrt{\frac{3\left(2x+1\right)}{px\left(x+5\right)}}\text{, }&\left(x<-5\text{ and }p<0\right)\text{ or }\left(p>0\text{ and }x>0\right)\text{ or }\left(x\geq -\frac{1}{2}\text{ and }x<0\text{ and }p<0\right)\text{ or }\left(x\leq -\frac{1}{2}\text{ and }p>0\text{ and }x>-5\right)\\n\in \mathrm{R}\text{, }&x=-\frac{1}{2}\text{ and }p=0\end{matrix}\right.
Graf
Tráth na gCeist
6 \cdot x - ( x + 5 ) \operatorname { npn } x = - 3
Roinn
Cóipeáladh go dtí an ghearrthaisce
6x-\left(x+5\right)n^{2}px=-3
Méadaigh n agus n chun n^{2} a fháil.
6x-\left(xn^{2}+5n^{2}\right)px=-3
Úsáid an t-airí dáileach chun x+5 a mhéadú faoi n^{2}.
6x-\left(xn^{2}p+5n^{2}p\right)x=-3
Úsáid an t-airí dáileach chun xn^{2}+5n^{2} a mhéadú faoi p.
6x-\left(n^{2}px^{2}+5n^{2}px\right)=-3
Úsáid an t-airí dáileach chun xn^{2}p+5n^{2}p a mhéadú faoi x.
6x-n^{2}px^{2}-5n^{2}px=-3
Chun an mhalairt ar n^{2}px^{2}+5n^{2}px a aimsiú, aimsigh an mhalairt ar gach téarma.
-n^{2}px^{2}-5n^{2}px=-3-6x
Bain 6x ón dá thaobh.
\left(-n^{2}x^{2}-5n^{2}x\right)p=-3-6x
Comhcheangail na téarmaí ar fad ina bhfuil p.
\left(-n^{2}x^{2}-5xn^{2}\right)p=-6x-3
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-n^{2}x^{2}-5xn^{2}\right)p}{-n^{2}x^{2}-5xn^{2}}=\frac{-6x-3}{-n^{2}x^{2}-5xn^{2}}
Roinn an dá thaobh faoi -5xn^{2}-x^{2}n^{2}.
p=\frac{-6x-3}{-n^{2}x^{2}-5xn^{2}}
Má roinntear é faoi -5xn^{2}-x^{2}n^{2} cuirtear an iolrúchán faoi -5xn^{2}-x^{2}n^{2} ar ceal.
p=\frac{3\left(2x+1\right)}{x\left(x+5\right)n^{2}}
Roinn -3-6x faoi -5xn^{2}-x^{2}n^{2}.
6x-\left(x+5\right)n^{2}px=-3
Méadaigh n agus n chun n^{2} a fháil.
6x-\left(xn^{2}+5n^{2}\right)px=-3
Úsáid an t-airí dáileach chun x+5 a mhéadú faoi n^{2}.
6x-\left(xn^{2}p+5n^{2}p\right)x=-3
Úsáid an t-airí dáileach chun xn^{2}+5n^{2} a mhéadú faoi p.
6x-\left(n^{2}px^{2}+5n^{2}px\right)=-3
Úsáid an t-airí dáileach chun xn^{2}p+5n^{2}p a mhéadú faoi x.
6x-n^{2}px^{2}-5n^{2}px=-3
Chun an mhalairt ar n^{2}px^{2}+5n^{2}px a aimsiú, aimsigh an mhalairt ar gach téarma.
-n^{2}px^{2}-5n^{2}px=-3-6x
Bain 6x ón dá thaobh.
\left(-n^{2}x^{2}-5n^{2}x\right)p=-3-6x
Comhcheangail na téarmaí ar fad ina bhfuil p.
\left(-n^{2}x^{2}-5xn^{2}\right)p=-6x-3
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-n^{2}x^{2}-5xn^{2}\right)p}{-n^{2}x^{2}-5xn^{2}}=\frac{-6x-3}{-n^{2}x^{2}-5xn^{2}}
Roinn an dá thaobh faoi -5xn^{2}-x^{2}n^{2}.
p=\frac{-6x-3}{-n^{2}x^{2}-5xn^{2}}
Má roinntear é faoi -5xn^{2}-x^{2}n^{2} cuirtear an iolrúchán faoi -5xn^{2}-x^{2}n^{2} ar ceal.
p=\frac{3\left(2x+1\right)}{x\left(x+5\right)n^{2}}
Roinn -6x-3 faoi -5xn^{2}-x^{2}n^{2}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}