Réitigh do x.
x=-1
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
5x-2\left(x-1\right)\left(3-x\right)-11=0
Bain 11 ón dá thaobh.
5x+\left(-2x+2\right)\left(3-x\right)-11=0
Úsáid an t-airí dáileach chun -2 a mhéadú faoi x-1.
5x-8x+2x^{2}+6-11=0
Úsáid an t-airí dáileach chun -2x+2 a mhéadú faoi 3-x agus chun téarmaí comhchosúla a chumasc.
-3x+2x^{2}+6-11=0
Comhcheangail 5x agus -8x chun -3x a fháil.
-3x+2x^{2}-5=0
Dealaigh 11 ó 6 chun -5 a fháil.
2x^{2}-3x-5=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 2 in ionad a, -3 in ionad b, agus -5 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Cearnóg -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
Méadaigh -4 faoi 2.
x=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
Méadaigh -8 faoi -5.
x=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
Suimigh 9 le 40?
x=\frac{-\left(-3\right)±7}{2\times 2}
Tóg fréamh chearnach 49.
x=\frac{3±7}{2\times 2}
Tá 3 urchomhairleach le -3.
x=\frac{3±7}{4}
Méadaigh 2 faoi 2.
x=\frac{10}{4}
Réitigh an chothromóid x=\frac{3±7}{4} nuair is ionann ± agus plus. Suimigh 3 le 7?
x=\frac{5}{2}
Laghdaigh an codán \frac{10}{4} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
x=-\frac{4}{4}
Réitigh an chothromóid x=\frac{3±7}{4} nuair is ionann ± agus míneas. Dealaigh 7 ó 3.
x=-1
Roinn -4 faoi 4.
x=\frac{5}{2} x=-1
Tá an chothromóid réitithe anois.
5x-2\left(x-1\right)\left(3-x\right)=11
Méadaigh -1 agus 2 chun -2 a fháil.
5x+\left(-2x+2\right)\left(3-x\right)=11
Úsáid an t-airí dáileach chun -2 a mhéadú faoi x-1.
5x-8x+2x^{2}+6=11
Úsáid an t-airí dáileach chun -2x+2 a mhéadú faoi 3-x agus chun téarmaí comhchosúla a chumasc.
-3x+2x^{2}+6=11
Comhcheangail 5x agus -8x chun -3x a fháil.
-3x+2x^{2}=11-6
Bain 6 ón dá thaobh.
-3x+2x^{2}=5
Dealaigh 6 ó 11 chun 5 a fháil.
2x^{2}-3x=5
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
\frac{2x^{2}-3x}{2}=\frac{5}{2}
Roinn an dá thaobh faoi 2.
x^{2}-\frac{3}{2}x=\frac{5}{2}
Má roinntear é faoi 2 cuirtear an iolrúchán faoi 2 ar ceal.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{4}\right)^{2}
Roinn -\frac{3}{2}, comhéifeacht an téarma x, faoi 2 chun -\frac{3}{4} a fháil. Ansin suimigh uimhir chearnach -\frac{3}{4} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Cearnaigh -\frac{3}{4} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Suimigh \frac{5}{2} le \frac{9}{16} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
\left(x-\frac{3}{4}\right)^{2}=\frac{49}{16}
Fachtóirigh x^{2}-\frac{3}{2}x+\frac{9}{16}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{3}{4}=\frac{7}{4} x-\frac{3}{4}=-\frac{7}{4}
Simpligh.
x=\frac{5}{2} x=-1
Cuir \frac{3}{4} leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}