Luacháil
-\frac{324}{x\left(x+9\right)^{2}}
Fairsingigh
-\frac{324}{x\left(x+9\right)^{2}}
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+9 agus x ná x\left(x+9\right). Méadaigh \frac{1}{x+9} faoi \frac{x}{x}. Méadaigh \frac{1}{x} faoi \frac{x+9}{x+9}.
4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Tá an t-ainmneoir céanna ag \frac{x}{x\left(x+9\right)} agus \frac{x+9}{x\left(x+9\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
4\times \frac{x-x-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Déan iolrúcháin in x-\left(x+9\right).
4\times \frac{-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Cumaisc téarmaí comhchosúla in: x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Scríobh 4\times \frac{-9}{x\left(x+9\right)} mar chodán aonair.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+9 agus x ná x\left(x+9\right). Méadaigh \frac{1}{x+9} faoi \frac{x}{x}. Méadaigh \frac{1}{x} faoi \frac{x+9}{x+9}.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Tá an t-ainmneoir céanna ag \frac{x}{x\left(x+9\right)} agus \frac{x+9}{x\left(x+9\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-x-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Déan iolrúcháin in x-\left(x+9\right).
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Cumaisc téarmaí comhchosúla in: x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Scríobh 4\times \frac{-9}{x\left(x+9\right)} mar chodán aonair.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Comhcheangail \frac{4\left(-9\right)}{x\left(x+9\right)} agus \frac{4\left(-9\right)}{x\left(x+9\right)} chun 2\times \frac{4\left(-9\right)}{x\left(x+9\right)} a fháil.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-x^{2}}{x^{2}\left(x+9\right)^{2}}+\frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+9\right)^{2} agus x^{2} ná x^{2}\left(x+9\right)^{2}. Méadaigh \frac{-1}{\left(x+9\right)^{2}} faoi \frac{x^{2}}{x^{2}}. Méadaigh \frac{1}{x^{2}} faoi \frac{\left(x+9\right)^{2}}{\left(x+9\right)^{2}}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{-x^{2}}{x^{2}\left(x+9\right)^{2}} agus \frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+x^{2}+18x+81}{x^{2}\left(x+9\right)^{2}}
Déan iolrúcháin in -x^{2}+\left(x+9\right)^{2}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}}
Cumaisc téarmaí comhchosúla in: -x^{2}+x^{2}+18x+81.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Scríobh 4\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}} mar chodán aonair.
2\times \frac{-36}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Méadaigh 4 agus -9 chun -36 a fháil.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Scríobh 2\times \frac{-36}{x\left(x+9\right)} mar chodán aonair.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x^{2}\left(x+9\right)^{2}}x
Úsáid an t-airí dáileach chun 4 a mhéadú faoi 18x+81.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{\left(72x+324\right)x}{x^{2}\left(x+9\right)^{2}}
Scríobh \frac{72x+324}{x^{2}\left(x+9\right)^{2}}x mar chodán aonair.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x\left(x+9\right)^{2}}
Cealaigh x mar uimhreoir agus ainmneoir.
\frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}}+\frac{72x+324}{x\left(x+9\right)^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x\left(x+9\right) agus x\left(x+9\right)^{2} ná x\left(x+9\right)^{2}. Méadaigh \frac{2\left(-36\right)}{x\left(x+9\right)} faoi \frac{x+9}{x+9}.
\frac{2\left(-36\right)\left(x+9\right)+72x+324}{x\left(x+9\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}} agus \frac{72x+324}{x\left(x+9\right)^{2}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{-72x-648+72x+324}{x\left(x+9\right)^{2}}
Déan iolrúcháin in 2\left(-36\right)\left(x+9\right)+72x+324.
\frac{-324}{x\left(x+9\right)^{2}}
Cumaisc téarmaí comhchosúla in: -72x-648+72x+324.
\frac{-324}{x^{3}+18x^{2}+81x}
Fairsingigh x\left(x+9\right)^{2}
4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+9 agus x ná x\left(x+9\right). Méadaigh \frac{1}{x+9} faoi \frac{x}{x}. Méadaigh \frac{1}{x} faoi \frac{x+9}{x+9}.
4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Tá an t-ainmneoir céanna ag \frac{x}{x\left(x+9\right)} agus \frac{x+9}{x\left(x+9\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
4\times \frac{x-x-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Déan iolrúcháin in x-\left(x+9\right).
4\times \frac{-9}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Cumaisc téarmaí comhchosúla in: x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{1}{x+9}-\frac{1}{x}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Scríobh 4\times \frac{-9}{x\left(x+9\right)} mar chodán aonair.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\left(\frac{x}{x\left(x+9\right)}-\frac{x+9}{x\left(x+9\right)}\right)+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x+9 agus x ná x\left(x+9\right). Méadaigh \frac{1}{x+9} faoi \frac{x}{x}. Méadaigh \frac{1}{x} faoi \frac{x+9}{x+9}.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-\left(x+9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Tá an t-ainmneoir céanna ag \frac{x}{x\left(x+9\right)} agus \frac{x+9}{x\left(x+9\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{x-x-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Déan iolrúcháin in x-\left(x+9\right).
\frac{4\left(-9\right)}{x\left(x+9\right)}+4\times \frac{-9}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Cumaisc téarmaí comhchosúla in: x-x-9.
\frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Scríobh 4\times \frac{-9}{x\left(x+9\right)} mar chodán aonair.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-1}{\left(x+9\right)^{2}}+\frac{1}{x^{2}}\right)
Comhcheangail \frac{4\left(-9\right)}{x\left(x+9\right)} agus \frac{4\left(-9\right)}{x\left(x+9\right)} chun 2\times \frac{4\left(-9\right)}{x\left(x+9\right)} a fháil.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\left(\frac{-x^{2}}{x^{2}\left(x+9\right)^{2}}+\frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}\right)
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de \left(x+9\right)^{2} agus x^{2} ná x^{2}\left(x+9\right)^{2}. Méadaigh \frac{-1}{\left(x+9\right)^{2}} faoi \frac{x^{2}}{x^{2}}. Méadaigh \frac{1}{x^{2}} faoi \frac{\left(x+9\right)^{2}}{\left(x+9\right)^{2}}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{-x^{2}}{x^{2}\left(x+9\right)^{2}} agus \frac{\left(x+9\right)^{2}}{x^{2}\left(x+9\right)^{2}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{-x^{2}+x^{2}+18x+81}{x^{2}\left(x+9\right)^{2}}
Déan iolrúcháin in -x^{2}+\left(x+9\right)^{2}.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+4x\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}}
Cumaisc téarmaí comhchosúla in: -x^{2}+x^{2}+18x+81.
2\times \frac{4\left(-9\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Scríobh 4\times \frac{18x+81}{x^{2}\left(x+9\right)^{2}} mar chodán aonair.
2\times \frac{-36}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Méadaigh 4 agus -9 chun -36 a fháil.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{4\left(18x+81\right)}{x^{2}\left(x+9\right)^{2}}x
Scríobh 2\times \frac{-36}{x\left(x+9\right)} mar chodán aonair.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x^{2}\left(x+9\right)^{2}}x
Úsáid an t-airí dáileach chun 4 a mhéadú faoi 18x+81.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{\left(72x+324\right)x}{x^{2}\left(x+9\right)^{2}}
Scríobh \frac{72x+324}{x^{2}\left(x+9\right)^{2}}x mar chodán aonair.
\frac{2\left(-36\right)}{x\left(x+9\right)}+\frac{72x+324}{x\left(x+9\right)^{2}}
Cealaigh x mar uimhreoir agus ainmneoir.
\frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}}+\frac{72x+324}{x\left(x+9\right)^{2}}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Is é an t-iolrach is lú coitianta de x\left(x+9\right) agus x\left(x+9\right)^{2} ná x\left(x+9\right)^{2}. Méadaigh \frac{2\left(-36\right)}{x\left(x+9\right)} faoi \frac{x+9}{x+9}.
\frac{2\left(-36\right)\left(x+9\right)+72x+324}{x\left(x+9\right)^{2}}
Tá an t-ainmneoir céanna ag \frac{2\left(-36\right)\left(x+9\right)}{x\left(x+9\right)^{2}} agus \frac{72x+324}{x\left(x+9\right)^{2}} agus, mar sin, is féidir iad a shuimiú trína n-uimhreoirí a shuimiú.
\frac{-72x-648+72x+324}{x\left(x+9\right)^{2}}
Déan iolrúcháin in 2\left(-36\right)\left(x+9\right)+72x+324.
\frac{-324}{x\left(x+9\right)^{2}}
Cumaisc téarmaí comhchosúla in: -72x-648+72x+324.
\frac{-324}{x^{3}+18x^{2}+81x}
Fairsingigh x\left(x+9\right)^{2}
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}