Réitigh do x. (complex solution)
x\in \sqrt[3]{\sqrt{21}+3}e^{\frac{\pi i}{3}},\sqrt[3]{\sqrt{21}+3}e^{\frac{5\pi i}{3}},-\sqrt[3]{\sqrt{21}+3},\sqrt[3]{\sqrt{21}-3}e^{\frac{4\pi i}{3}},\sqrt[3]{\sqrt{21}-3},\sqrt[3]{\sqrt{21}-3}e^{\frac{2\pi i}{3}}
Réitigh do x.
x=\sqrt[3]{\sqrt{21}-3}\approx 1.165345841
x=-\sqrt[3]{\sqrt{21}+3}\approx -1.964591458
Graf
Tráth na gCeist
Quadratic Equation
5 fadhbanna cosúil le:
4 = \frac { 1 } { 6 } x ^ { 6 } + x ^ { 3 } + 2
Roinn
Cóipeáladh go dtí an ghearrthaisce
\frac{1}{6}x^{6}+x^{3}+2=4
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
\frac{1}{6}x^{6}+x^{3}+2-4=0
Bain 4 ón dá thaobh.
\frac{1}{6}x^{6}+x^{3}-2=0
Dealaigh 4 ó 2 chun -2 a fháil.
\frac{1}{6}t^{2}+t-2=0
Cuir t in ionad x^{3}.
t=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{6}\left(-2\right)}}{\frac{1}{6}\times 2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir \frac{1}{6} in ionad a, 1 in ionad b agus -2 in ionad c san fhoirmle chearnach.
t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}}
Déan áirimh.
t=\sqrt{21}-3 t=-\sqrt{21}-3
Réitigh an chothromóid t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}} nuair is ionann ± agus luach deimhneach agus ± agus luach diúltach.
x=-\sqrt[3]{\sqrt{21}-3}e^{\frac{\pi i}{3}} x=\sqrt[3]{\sqrt{21}-3}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\sqrt{21}-3} x=-\sqrt[3]{\sqrt{21}+3}ie^{\frac{\pi i}{6}} x=-\sqrt[3]{\sqrt{21}+3} x=\sqrt[3]{\sqrt{21}+3}e^{\frac{\pi i}{3}}
x=t^{3} agus sin an fáth go dtagtar ar na réitigh tríd an gcothromóid a réiteach do gach t.
\frac{1}{6}x^{6}+x^{3}+2=4
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
\frac{1}{6}x^{6}+x^{3}+2-4=0
Bain 4 ón dá thaobh.
\frac{1}{6}x^{6}+x^{3}-2=0
Dealaigh 4 ó 2 chun -2 a fháil.
\frac{1}{6}t^{2}+t-2=0
Cuir t in ionad x^{3}.
t=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{6}\left(-2\right)}}{\frac{1}{6}\times 2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir \frac{1}{6} in ionad a, 1 in ionad b agus -2 in ionad c san fhoirmle chearnach.
t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}}
Déan áirimh.
t=\sqrt{21}-3 t=-\sqrt{21}-3
Réitigh an chothromóid t=\frac{-1±\frac{1}{3}\sqrt{21}}{\frac{1}{3}} nuair is ionann ± agus luach deimhneach agus ± agus luach diúltach.
x=\sqrt[3]{\sqrt{21}-3} x=-\sqrt[3]{\sqrt{21}+3}
Más x=t^{3}, is féidir teacht ar na réitigh ach x=\sqrt[3]{t} a mheas i gcomhair gach t.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}