Réitigh do x.
x=-4
x=9
Graf
Tráth na gCeist
Quadratic Equation
5 fadhbanna cosúil le:
36=x(x-5)
Roinn
Cóipeáladh go dtí an ghearrthaisce
36=x^{2}-5x
Úsáid an t-airí dáileach chun x a mhéadú faoi x-5.
x^{2}-5x=36
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x^{2}-5x-36=0
Bain 36 ón dá thaobh.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-36\right)}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, -5 in ionad b, agus -36 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-36\right)}}{2}
Cearnóg -5.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2}
Méadaigh -4 faoi -36.
x=\frac{-\left(-5\right)±\sqrt{169}}{2}
Suimigh 25 le 144?
x=\frac{-\left(-5\right)±13}{2}
Tóg fréamh chearnach 169.
x=\frac{5±13}{2}
Tá 5 urchomhairleach le -5.
x=\frac{18}{2}
Réitigh an chothromóid x=\frac{5±13}{2} nuair is ionann ± agus plus. Suimigh 5 le 13?
x=9
Roinn 18 faoi 2.
x=-\frac{8}{2}
Réitigh an chothromóid x=\frac{5±13}{2} nuair is ionann ± agus míneas. Dealaigh 13 ó 5.
x=-4
Roinn -8 faoi 2.
x=9 x=-4
Tá an chothromóid réitithe anois.
36=x^{2}-5x
Úsáid an t-airí dáileach chun x a mhéadú faoi x-5.
x^{2}-5x=36
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=36+\left(-\frac{5}{2}\right)^{2}
Roinn -5, comhéifeacht an téarma x, faoi 2 chun -\frac{5}{2} a fháil. Ansin suimigh uimhir chearnach -\frac{5}{2} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-5x+\frac{25}{4}=36+\frac{25}{4}
Cearnaigh -\frac{5}{2} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-5x+\frac{25}{4}=\frac{169}{4}
Suimigh 36 le \frac{25}{4}?
\left(x-\frac{5}{2}\right)^{2}=\frac{169}{4}
Fachtóirigh x^{2}-5x+\frac{25}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{5}{2}=\frac{13}{2} x-\frac{5}{2}=-\frac{13}{2}
Simpligh.
x=9 x=-4
Cuir \frac{5}{2} leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}