Scipeáil chuig an bpríomhábhar
Fachtóirigh
Tick mark Image
Luacháil
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

factor(-12x^{2}+75x+1000)
Comhcheangail 3x^{2} agus -15x^{2} chun -12x^{2} a fháil.
-12x^{2}+75x+1000=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-75±\sqrt{75^{2}-4\left(-12\right)\times 1000}}{2\left(-12\right)}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-75±\sqrt{5625-4\left(-12\right)\times 1000}}{2\left(-12\right)}
Cearnóg 75.
x=\frac{-75±\sqrt{5625+48\times 1000}}{2\left(-12\right)}
Méadaigh -4 faoi -12.
x=\frac{-75±\sqrt{5625+48000}}{2\left(-12\right)}
Méadaigh 48 faoi 1000.
x=\frac{-75±\sqrt{53625}}{2\left(-12\right)}
Suimigh 5625 le 48000?
x=\frac{-75±5\sqrt{2145}}{2\left(-12\right)}
Tóg fréamh chearnach 53625.
x=\frac{-75±5\sqrt{2145}}{-24}
Méadaigh 2 faoi -12.
x=\frac{5\sqrt{2145}-75}{-24}
Réitigh an chothromóid x=\frac{-75±5\sqrt{2145}}{-24} nuair is ionann ± agus plus. Suimigh -75 le 5\sqrt{2145}?
x=-\frac{5\sqrt{2145}}{24}+\frac{25}{8}
Roinn -75+5\sqrt{2145} faoi -24.
x=\frac{-5\sqrt{2145}-75}{-24}
Réitigh an chothromóid x=\frac{-75±5\sqrt{2145}}{-24} nuair is ionann ± agus míneas. Dealaigh 5\sqrt{2145} ó -75.
x=\frac{5\sqrt{2145}}{24}+\frac{25}{8}
Roinn -75-5\sqrt{2145} faoi -24.
-12x^{2}+75x+1000=-12\left(x-\left(-\frac{5\sqrt{2145}}{24}+\frac{25}{8}\right)\right)\left(x-\left(\frac{5\sqrt{2145}}{24}+\frac{25}{8}\right)\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir \frac{25}{8}-\frac{5\sqrt{2145}}{24} in ionad x_{1} agus \frac{25}{8}+\frac{5\sqrt{2145}}{24} in ionad x_{2}.
-12x^{2}+75x+1000
Comhcheangail 3x^{2} agus -15x^{2} chun -12x^{2} a fháil.