Réitigh do x.
x=\frac{\left(-25^{y}+\frac{1}{y}\right)^{2}}{10000}
\left(\frac{|1-y\times 25^{y}|}{|y|}\leq 0\text{ or }-\frac{25^{y}}{100}+\frac{1}{100y}\leq 0\right)\text{ and }y\neq 0
Réitigh do x. (complex solution)
x=\frac{\left(-25^{y}+\frac{1}{y}\right)^{2}}{10000}
\left(y\neq 0\text{ and }1-y\times 25^{y}=0\text{ and }\frac{1-y\times 25^{y}}{100}=0\right)\text{ or }\left(y\neq 0\text{ and }arg(-\frac{25^{y}}{100}+\frac{1}{100y})\geq \pi \text{ and }\frac{1-y\times 25^{y}}{100}\neq 0\right)
Graf
Tráth na gCeist
Algebra
5 fadhbanna cosúil le:
25 ^ { y } = 100 \cdot \sqrt { x } + \frac { 1 } { y } =
Roinn
Cóipeáladh go dtí an ghearrthaisce
y\times 25^{y}=100\sqrt{x}y+1
Méadaigh an dá thaobh den chothromóid faoi y.
100\sqrt{x}y+1=y\times 25^{y}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
100\sqrt{x}y=y\times 25^{y}-1
Bain 1 ón dá thaobh.
\frac{100y\sqrt{x}}{100y}=\frac{y\times 25^{y}-1}{100y}
Roinn an dá thaobh faoi 100y.
\sqrt{x}=\frac{y\times 25^{y}-1}{100y}
Má roinntear é faoi 100y cuirtear an iolrúchán faoi 100y ar ceal.
x=\frac{\left(y\times 25^{y}-1\right)^{2}}{10000y^{2}}
Cearnaigh an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}