Scipeáil chuig an bpríomhábhar
Fachtóirigh
Tick mark Image
Luacháil
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a+b=-1 ab=2\left(-6\right)=-12
Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar 2x^{2}+ax+bx-6 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,-12 2,-6 3,-4
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -12.
1-12=-11 2-6=-4 3-4=-1
Áirigh an tsuim do gach péire.
a=-4 b=3
Is é an réiteach ná an péire a thugann an tsuim -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
Athscríobh 2x^{2}-x-6 mar \left(2x^{2}-4x\right)+\left(3x-6\right).
2x\left(x-2\right)+3\left(x-2\right)
Fág 2x as an áireamh sa chead ghrúpa agus 3 sa dara grúpa.
\left(x-2\right)\left(2x+3\right)
Fág an téarma coitianta x-2 as an áireamh ag úsáid airí dháiligh.
2x^{2}-x-6=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Méadaigh -4 faoi 2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Méadaigh -8 faoi -6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Suimigh 1 le 48?
x=\frac{-\left(-1\right)±7}{2\times 2}
Tóg fréamh chearnach 49.
x=\frac{1±7}{2\times 2}
Tá 1 urchomhairleach le -1.
x=\frac{1±7}{4}
Méadaigh 2 faoi 2.
x=\frac{8}{4}
Réitigh an chothromóid x=\frac{1±7}{4} nuair is ionann ± agus plus. Suimigh 1 le 7?
x=2
Roinn 8 faoi 4.
x=-\frac{6}{4}
Réitigh an chothromóid x=\frac{1±7}{4} nuair is ionann ± agus míneas. Dealaigh 7 ó 1.
x=-\frac{3}{2}
Laghdaigh an codán \frac{-6}{4} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
2x^{2}-x-6=2\left(x-2\right)\left(x-\left(-\frac{3}{2}\right)\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir 2 in ionad x_{1} agus -\frac{3}{2} in ionad x_{2}.
2x^{2}-x-6=2\left(x-2\right)\left(x+\frac{3}{2}\right)
Simpligh na sloinn uile a bhfuil an fhoirm p-\left(-q\right) go p+q orthu.
2x^{2}-x-6=2\left(x-2\right)\times \frac{2x+3}{2}
Suimigh \frac{3}{2} le x trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
2x^{2}-x-6=\left(x-2\right)\left(2x+3\right)
Cealaigh an comhfhachtóir 2 is mó in 2 agus 2.