Fachtóirigh
2\left(x-3\right)\left(x+1\right)
Luacháil
2\left(x-3\right)\left(x+1\right)
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
2 x ^ { 2 } - 4 x - 6 =
Roinn
Cóipeáladh go dtí an ghearrthaisce
2\left(x^{2}-2x-3\right)
Fág 2 as an áireamh.
a+b=-2 ab=1\left(-3\right)=-3
Mar shampla x^{2}-2x-3. Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar x^{2}+ax+bx-3 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
a=-3 b=1
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Is é an péire sin réiteach an chórais.
\left(x^{2}-3x\right)+\left(x-3\right)
Athscríobh x^{2}-2x-3 mar \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Fág x as an áireamh in x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Fág an téarma coitianta x-3 as an áireamh ag úsáid airí dháiligh.
2\left(x-3\right)\left(x+1\right)
Athscríobh an slonn iomlán fachtóirithe.
2x^{2}-4x-6=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
Cearnóg -4.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-6\right)}}{2\times 2}
Méadaigh -4 faoi 2.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\times 2}
Méadaigh -8 faoi -6.
x=\frac{-\left(-4\right)±\sqrt{64}}{2\times 2}
Suimigh 16 le 48?
x=\frac{-\left(-4\right)±8}{2\times 2}
Tóg fréamh chearnach 64.
x=\frac{4±8}{2\times 2}
Tá 4 urchomhairleach le -4.
x=\frac{4±8}{4}
Méadaigh 2 faoi 2.
x=\frac{12}{4}
Réitigh an chothromóid x=\frac{4±8}{4} nuair is ionann ± agus plus. Suimigh 4 le 8?
x=3
Roinn 12 faoi 4.
x=-\frac{4}{4}
Réitigh an chothromóid x=\frac{4±8}{4} nuair is ionann ± agus míneas. Dealaigh 8 ó 4.
x=-1
Roinn -4 faoi 4.
2x^{2}-4x-6=2\left(x-3\right)\left(x-\left(-1\right)\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir 3 in ionad x_{1} agus -1 in ionad x_{2}.
2x^{2}-4x-6=2\left(x-3\right)\left(x+1\right)
Simpligh na sloinn uile a bhfuil an fhoirm p-\left(-q\right) go p+q orthu.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}