Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a+b=-3 ab=2\left(-14\right)=-28
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar 2x^{2}+ax+bx-14 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,-28 2,-14 4,-7
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhiúltach ná ag an uimhir dhearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -28.
1-28=-27 2-14=-12 4-7=-3
Áirigh an tsuim do gach péire.
a=-7 b=4
Is é an réiteach ná an péire a thugann an tsuim -3.
\left(2x^{2}-7x\right)+\left(4x-14\right)
Athscríobh 2x^{2}-3x-14 mar \left(2x^{2}-7x\right)+\left(4x-14\right).
x\left(2x-7\right)+2\left(2x-7\right)
Fág x as an áireamh sa chead ghrúpa agus 2 sa dara grúpa.
\left(2x-7\right)\left(x+2\right)
Fág an téarma coitianta 2x-7 as an áireamh ag úsáid airí dháiligh.
x=\frac{7}{2} x=-2
Réitigh 2x-7=0 agus x+2=0 chun réitigh cothromóide a fháil.
2x^{2}-3x-14=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-14\right)}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 2 in ionad a, -3 in ionad b, agus -14 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-14\right)}}{2\times 2}
Cearnóg -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-14\right)}}{2\times 2}
Méadaigh -4 faoi 2.
x=\frac{-\left(-3\right)±\sqrt{9+112}}{2\times 2}
Méadaigh -8 faoi -14.
x=\frac{-\left(-3\right)±\sqrt{121}}{2\times 2}
Suimigh 9 le 112?
x=\frac{-\left(-3\right)±11}{2\times 2}
Tóg fréamh chearnach 121.
x=\frac{3±11}{2\times 2}
Tá 3 urchomhairleach le -3.
x=\frac{3±11}{4}
Méadaigh 2 faoi 2.
x=\frac{14}{4}
Réitigh an chothromóid x=\frac{3±11}{4} nuair is ionann ± agus plus. Suimigh 3 le 11?
x=\frac{7}{2}
Laghdaigh an codán \frac{14}{4} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
x=-\frac{8}{4}
Réitigh an chothromóid x=\frac{3±11}{4} nuair is ionann ± agus míneas. Dealaigh 11 ó 3.
x=-2
Roinn -8 faoi 4.
x=\frac{7}{2} x=-2
Tá an chothromóid réitithe anois.
2x^{2}-3x-14=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
2x^{2}-3x-14-\left(-14\right)=-\left(-14\right)
Cuir 14 leis an dá thaobh den chothromóid.
2x^{2}-3x=-\left(-14\right)
Má dhealaítear -14 uaidh féin faightear 0.
2x^{2}-3x=14
Dealaigh -14 ó 0.
\frac{2x^{2}-3x}{2}=\frac{14}{2}
Roinn an dá thaobh faoi 2.
x^{2}-\frac{3}{2}x=\frac{14}{2}
Má roinntear é faoi 2 cuirtear an iolrúchán faoi 2 ar ceal.
x^{2}-\frac{3}{2}x=7
Roinn 14 faoi 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=7+\left(-\frac{3}{4}\right)^{2}
Roinn -\frac{3}{2}, comhéifeacht an téarma x, faoi 2 chun -\frac{3}{4} a fháil. Ansin suimigh uimhir chearnach -\frac{3}{4} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-\frac{3}{2}x+\frac{9}{16}=7+\frac{9}{16}
Cearnaigh -\frac{3}{4} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{121}{16}
Suimigh 7 le \frac{9}{16}?
\left(x-\frac{3}{4}\right)^{2}=\frac{121}{16}
Fachtóirigh x^{2}-\frac{3}{2}x+\frac{9}{16}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{3}{4}=\frac{11}{4} x-\frac{3}{4}=-\frac{11}{4}
Simpligh.
x=\frac{7}{2} x=-2
Cuir \frac{3}{4} leis an dá thaobh den chothromóid.