Réitigh do x. (complex solution)
x=\frac{\sqrt{146}i}{2}+7\approx 7+6.041522987i
x=-\frac{\sqrt{146}i}{2}+7\approx 7-6.041522987i
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
2x^{2}-28x+171=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\times 171}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 2 in ionad a, -28 in ionad b, agus 171 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\times 171}}{2\times 2}
Cearnóg -28.
x=\frac{-\left(-28\right)±\sqrt{784-8\times 171}}{2\times 2}
Méadaigh -4 faoi 2.
x=\frac{-\left(-28\right)±\sqrt{784-1368}}{2\times 2}
Méadaigh -8 faoi 171.
x=\frac{-\left(-28\right)±\sqrt{-584}}{2\times 2}
Suimigh 784 le -1368?
x=\frac{-\left(-28\right)±2\sqrt{146}i}{2\times 2}
Tóg fréamh chearnach -584.
x=\frac{28±2\sqrt{146}i}{2\times 2}
Tá 28 urchomhairleach le -28.
x=\frac{28±2\sqrt{146}i}{4}
Méadaigh 2 faoi 2.
x=\frac{28+2\sqrt{146}i}{4}
Réitigh an chothromóid x=\frac{28±2\sqrt{146}i}{4} nuair is ionann ± agus plus. Suimigh 28 le 2i\sqrt{146}?
x=\frac{\sqrt{146}i}{2}+7
Roinn 28+2i\sqrt{146} faoi 4.
x=\frac{-2\sqrt{146}i+28}{4}
Réitigh an chothromóid x=\frac{28±2\sqrt{146}i}{4} nuair is ionann ± agus míneas. Dealaigh 2i\sqrt{146} ó 28.
x=-\frac{\sqrt{146}i}{2}+7
Roinn 28-2i\sqrt{146} faoi 4.
x=\frac{\sqrt{146}i}{2}+7 x=-\frac{\sqrt{146}i}{2}+7
Tá an chothromóid réitithe anois.
2x^{2}-28x+171=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
2x^{2}-28x+171-171=-171
Bain 171 ón dá thaobh den chothromóid.
2x^{2}-28x=-171
Má dhealaítear 171 uaidh féin faightear 0.
\frac{2x^{2}-28x}{2}=-\frac{171}{2}
Roinn an dá thaobh faoi 2.
x^{2}+\left(-\frac{28}{2}\right)x=-\frac{171}{2}
Má roinntear é faoi 2 cuirtear an iolrúchán faoi 2 ar ceal.
x^{2}-14x=-\frac{171}{2}
Roinn -28 faoi 2.
x^{2}-14x+\left(-7\right)^{2}=-\frac{171}{2}+\left(-7\right)^{2}
Roinn -14, comhéifeacht an téarma x, faoi 2 chun -7 a fháil. Ansin suimigh uimhir chearnach -7 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-14x+49=-\frac{171}{2}+49
Cearnóg -7.
x^{2}-14x+49=-\frac{73}{2}
Suimigh -\frac{171}{2} le 49?
\left(x-7\right)^{2}=-\frac{73}{2}
Fachtóirigh x^{2}-14x+49. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{-\frac{73}{2}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-7=\frac{\sqrt{146}i}{2} x-7=-\frac{\sqrt{146}i}{2}
Simpligh.
x=\frac{\sqrt{146}i}{2}+7 x=-\frac{\sqrt{146}i}{2}+7
Cuir 7 leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}