Réitigh do j.
\left\{\begin{matrix}j=\frac{i+3kyz^{2}-2x^{2}}{xzy^{2}}\text{, }&z\neq 0\text{ and }y\neq 0\text{ and }x\neq 0\\j\in \mathrm{C}\text{, }&\left(x=0\text{ and }y=\frac{-i}{3kz^{2}}\text{ and }k\neq 0\text{ and }z\neq 0\right)\text{ or }\left(x=\frac{1}{2}+\frac{1}{2}i\text{ and }y=0\right)\text{ or }\left(x=\frac{1}{2}+\frac{1}{2}i\text{ and }z=0\right)\text{ or }\left(x=-\frac{1}{2}-\frac{1}{2}i\text{ and }y=0\right)\text{ or }\left(x=-\frac{1}{2}-\frac{1}{2}i\text{ and }z=0\right)\end{matrix}\right.
Réitigh do k.
\left\{\begin{matrix}k=-\frac{i-jxzy^{2}-2x^{2}}{3yz^{2}}\text{, }&z\neq 0\text{ and }y\neq 0\\k\in \mathrm{C}\text{, }&\left(x=\frac{1}{2}+\frac{1}{2}i\text{ and }y=0\right)\text{ or }\left(x=\frac{1}{2}+\frac{1}{2}i\text{ and }z=0\right)\text{ or }\left(x=-\frac{1}{2}-\frac{1}{2}i\text{ and }y=0\right)\text{ or }\left(x=-\frac{1}{2}-\frac{1}{2}i\text{ and }z=0\right)\end{matrix}\right.
Tráth na gCeist
Complex Number
5 fadhbanna cosúil le:
2 x ^ { 2 } = i - x y ^ { 2 } z j + 3 y z ^ { 2 } k
Roinn
Cóipeáladh go dtí an ghearrthaisce
i-xy^{2}zj+3yz^{2}k=2x^{2}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
i-xy^{2}zj=2x^{2}-3yz^{2}k
Bain 3yz^{2}k ón dá thaobh.
-xy^{2}zj=2x^{2}-3yz^{2}k-i
Bain i ón dá thaobh.
\left(-xzy^{2}\right)j=2x^{2}-3kyz^{2}-i
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-xzy^{2}\right)j}{-xzy^{2}}=\frac{2x^{2}-3kyz^{2}-i}{-xzy^{2}}
Roinn an dá thaobh faoi -xy^{2}z.
j=\frac{2x^{2}-3kyz^{2}-i}{-xzy^{2}}
Má roinntear é faoi -xy^{2}z cuirtear an iolrúchán faoi -xy^{2}z ar ceal.
j=-\frac{2x^{2}-3kyz^{2}-i}{xzy^{2}}
Roinn -i+2x^{2}-3yz^{2}k faoi -xy^{2}z.
i-xy^{2}zj+3yz^{2}k=2x^{2}
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
3yz^{2}k=2x^{2}-\left(i-xy^{2}zj\right)
Bain i-xy^{2}zj ón dá thaobh.
3yz^{2}k=2x^{2}-i+xy^{2}zj
Chun an mhalairt ar i-xy^{2}zj a aimsiú, aimsigh an mhalairt ar gach téarma.
3yz^{2}k=2x^{2}+jxzy^{2}-i
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{3yz^{2}k}{3yz^{2}}=\frac{2x^{2}+jxzy^{2}-i}{3yz^{2}}
Roinn an dá thaobh faoi 3yz^{2}.
k=\frac{2x^{2}+jxzy^{2}-i}{3yz^{2}}
Má roinntear é faoi 3yz^{2} cuirtear an iolrúchán faoi 3yz^{2} ar ceal.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}