Scipeáil chuig an bpríomhábhar
Fachtóirigh
Tick mark Image
Luacháil
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a+b=7 ab=2\times 5=10
Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar 2x^{2}+ax+bx+5 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
1,10 2,5
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil a agus b araon dearfach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh 10.
1+10=11 2+5=7
Áirigh an tsuim do gach péire.
a=2 b=5
Is é an réiteach ná an péire a thugann an tsuim 7.
\left(2x^{2}+2x\right)+\left(5x+5\right)
Athscríobh 2x^{2}+7x+5 mar \left(2x^{2}+2x\right)+\left(5x+5\right).
2x\left(x+1\right)+5\left(x+1\right)
Fág 2x as an áireamh sa chead ghrúpa agus 5 sa dara grúpa.
\left(x+1\right)\left(2x+5\right)
Fág an téarma coitianta x+1 as an áireamh ag úsáid airí dháiligh.
2x^{2}+7x+5=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 5}}{2\times 2}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-7±\sqrt{49-4\times 2\times 5}}{2\times 2}
Cearnóg 7.
x=\frac{-7±\sqrt{49-8\times 5}}{2\times 2}
Méadaigh -4 faoi 2.
x=\frac{-7±\sqrt{49-40}}{2\times 2}
Méadaigh -8 faoi 5.
x=\frac{-7±\sqrt{9}}{2\times 2}
Suimigh 49 le -40?
x=\frac{-7±3}{2\times 2}
Tóg fréamh chearnach 9.
x=\frac{-7±3}{4}
Méadaigh 2 faoi 2.
x=-\frac{4}{4}
Réitigh an chothromóid x=\frac{-7±3}{4} nuair is ionann ± agus plus. Suimigh -7 le 3?
x=-1
Roinn -4 faoi 4.
x=-\frac{10}{4}
Réitigh an chothromóid x=\frac{-7±3}{4} nuair is ionann ± agus míneas. Dealaigh 3 ó -7.
x=-\frac{5}{2}
Laghdaigh an codán \frac{-10}{4} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
2x^{2}+7x+5=2\left(x-\left(-1\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir -1 in ionad x_{1} agus -\frac{5}{2} in ionad x_{2}.
2x^{2}+7x+5=2\left(x+1\right)\left(x+\frac{5}{2}\right)
Simpligh na sloinn uile a bhfuil an fhoirm p-\left(-q\right) go p+q orthu.
2x^{2}+7x+5=2\left(x+1\right)\times \frac{2x+5}{2}
Suimigh \frac{5}{2} le x trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
2x^{2}+7x+5=\left(x+1\right)\left(2x+5\right)
Cealaigh an comhfhachtóir 2 is mó in 2 agus 2.