Réitigh do h.
h = -\frac{5}{2} = -2\frac{1}{2} = -2.5
h=1
Réitigh do x. (complex solution)
x\in \mathrm{C}
h=-\frac{5}{2}\text{ or }h=1
Réitigh do x.
x\in \mathrm{R}
h=1\text{ or }h=-\frac{5}{2}
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
2h^{2}+3\left(x+h-x\right)=5
Comhcheangail x agus -x chun 0 a fháil.
2h^{2}+3h=5
Comhcheangail x agus -x chun 0 a fháil.
2h^{2}+3h-5=0
Bain 5 ón dá thaobh.
h=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 2 in ionad a, 3 in ionad b, agus -5 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
Cearnóg 3.
h=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
Méadaigh -4 faoi 2.
h=\frac{-3±\sqrt{9+40}}{2\times 2}
Méadaigh -8 faoi -5.
h=\frac{-3±\sqrt{49}}{2\times 2}
Suimigh 9 le 40?
h=\frac{-3±7}{2\times 2}
Tóg fréamh chearnach 49.
h=\frac{-3±7}{4}
Méadaigh 2 faoi 2.
h=\frac{4}{4}
Réitigh an chothromóid h=\frac{-3±7}{4} nuair is ionann ± agus plus. Suimigh -3 le 7?
h=1
Roinn 4 faoi 4.
h=-\frac{10}{4}
Réitigh an chothromóid h=\frac{-3±7}{4} nuair is ionann ± agus míneas. Dealaigh 7 ó -3.
h=-\frac{5}{2}
Laghdaigh an codán \frac{-10}{4} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
h=1 h=-\frac{5}{2}
Tá an chothromóid réitithe anois.
2h^{2}+3\left(x+h-x\right)=5
Comhcheangail x agus -x chun 0 a fháil.
2h^{2}+3h=5
Comhcheangail x agus -x chun 0 a fháil.
\frac{2h^{2}+3h}{2}=\frac{5}{2}
Roinn an dá thaobh faoi 2.
h^{2}+\frac{3}{2}h=\frac{5}{2}
Má roinntear é faoi 2 cuirtear an iolrúchán faoi 2 ar ceal.
h^{2}+\frac{3}{2}h+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Roinn \frac{3}{2}, comhéifeacht an téarma x, faoi 2 chun \frac{3}{4} a fháil. Ansin suimigh uimhir chearnach \frac{3}{4} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
h^{2}+\frac{3}{2}h+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Cearnaigh \frac{3}{4} trí uimhreoir agus ainmneoir an chodáin a chearnú.
h^{2}+\frac{3}{2}h+\frac{9}{16}=\frac{49}{16}
Suimigh \frac{5}{2} le \frac{9}{16} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
\left(h+\frac{3}{4}\right)^{2}=\frac{49}{16}
Fachtóirigh h^{2}+\frac{3}{2}h+\frac{9}{16}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
h+\frac{3}{4}=\frac{7}{4} h+\frac{3}{4}=-\frac{7}{4}
Simpligh.
h=1 h=-\frac{5}{2}
Bain \frac{3}{4} ón dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}