Scipeáil chuig an bpríomhábhar
Réitigh do x. (complex solution)
Tick mark Image
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta 60 agus nuair a roinneann q an chomhéifeacht thosaigh 2. Liostaigh gach iarrthóir \frac{p}{q}.
x=-4
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
2x^{2}-2x+15=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn 2x^{3}+6x^{2}+7x+60 faoi x+4 chun 2x^{2}-2x+15 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir 2 in ionad a, -2 in ionad b agus 15 in ionad c san fhoirmle chearnach.
x=\frac{2±\sqrt{-116}}{4}
Déan áirimh.
x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Réitigh an chothromóid 2x^{2}-2x+15=0 nuair is ionann ± agus luach deimhneach agus ± agus luach diúltach.
x=-4 x=\frac{-\sqrt{29}i+1}{2} x=\frac{1+\sqrt{29}i}{2}
Liostaigh na réitigh ar fad a aimsíodh.
±30,±60,±15,±10,±20,±\frac{15}{2},±6,±12,±5,±3,±\frac{5}{2},±2,±4,±\frac{3}{2},±1,±\frac{1}{2}
Faoi theoirim na fréimhe cóimheasta, bíonn fréamhacha cóimheasta iltéarmaigh i bhfoirm \frac{p}{q}, nuair a roinneann p an téarma seasta 60 agus nuair a roinneann q an chomhéifeacht thosaigh 2. Liostaigh gach iarrthóir \frac{p}{q}.
x=-4
Is féidir fréamh den sórt sin a aimsiú ach triail a bhaint as na luachanna slánuimhreach ar fad, ag tosú leis an gceann is lú bunaithe ar an dearbhluach. Mura n-aimsítear fréamhacha slánuimhreach, bain triail as codáin.
2x^{2}-2x+15=0
Faoi theoirim an fhachtóra, is é x-k fachtóir an iltéarmaigh do gach fréamh k. Roinn 2x^{3}+6x^{2}+7x+60 faoi x+4 chun 2x^{2}-2x+15 a fháil. Réitigh an chothromóid nuair is ionann an toradh agus 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 15}}{2\times 2}
Is féidir gach cothromóid i bhfoirm ax^{2}+bx+c=0 a réiteach ach an fhoirmle chearnach seo a úsáid: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Cuir 2 in ionad a, -2 in ionad b agus 15 in ionad c san fhoirmle chearnach.
x=\frac{2±\sqrt{-116}}{4}
Déan áirimh.
x\in \emptyset
Níl aon réitigh ann toisc nach bhfuil fréamh chearnach uimhreach diúltaí sainithe sa réimse réadach.
x=-4
Liostaigh na réitigh ar fad a aimsíodh.