Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

2x^{2}+x-6-30=0
Bain 30 ón dá thaobh.
2x^{2}+x-36=0
Dealaigh 30 ó -6 chun -36 a fháil.
a+b=1 ab=2\left(-36\right)=-72
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar 2x^{2}+ax+bx-36 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Áirigh an tsuim do gach péire.
a=-8 b=9
Is é an réiteach ná an péire a thugann an tsuim 1.
\left(2x^{2}-8x\right)+\left(9x-36\right)
Athscríobh 2x^{2}+x-36 mar \left(2x^{2}-8x\right)+\left(9x-36\right).
2x\left(x-4\right)+9\left(x-4\right)
Fág 2x as an áireamh sa chead ghrúpa agus 9 sa dara grúpa.
\left(x-4\right)\left(2x+9\right)
Fág an téarma coitianta x-4 as an áireamh ag úsáid airí dháiligh.
x=4 x=-\frac{9}{2}
Réitigh x-4=0 agus 2x+9=0 chun réitigh cothromóide a fháil.
2x^{2}+x-6=30
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
2x^{2}+x-6-30=30-30
Bain 30 ón dá thaobh den chothromóid.
2x^{2}+x-6-30=0
Má dhealaítear 30 uaidh féin faightear 0.
2x^{2}+x-36=0
Dealaigh 30 ó -6.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-36\right)}}{2\times 2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 2 in ionad a, 1 in ionad b, agus -36 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-36\right)}}{2\times 2}
Cearnóg 1.
x=\frac{-1±\sqrt{1-8\left(-36\right)}}{2\times 2}
Méadaigh -4 faoi 2.
x=\frac{-1±\sqrt{1+288}}{2\times 2}
Méadaigh -8 faoi -36.
x=\frac{-1±\sqrt{289}}{2\times 2}
Suimigh 1 le 288?
x=\frac{-1±17}{2\times 2}
Tóg fréamh chearnach 289.
x=\frac{-1±17}{4}
Méadaigh 2 faoi 2.
x=\frac{16}{4}
Réitigh an chothromóid x=\frac{-1±17}{4} nuair is ionann ± agus plus. Suimigh -1 le 17?
x=4
Roinn 16 faoi 4.
x=-\frac{18}{4}
Réitigh an chothromóid x=\frac{-1±17}{4} nuair is ionann ± agus míneas. Dealaigh 17 ó -1.
x=-\frac{9}{2}
Laghdaigh an codán \frac{-18}{4} chuig na téarmaí is ísle trí 2 a bhaint agus a chealú.
x=4 x=-\frac{9}{2}
Tá an chothromóid réitithe anois.
2x^{2}+x-6=30
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
2x^{2}+x-6-\left(-6\right)=30-\left(-6\right)
Cuir 6 leis an dá thaobh den chothromóid.
2x^{2}+x=30-\left(-6\right)
Má dhealaítear -6 uaidh féin faightear 0.
2x^{2}+x=36
Dealaigh -6 ó 30.
\frac{2x^{2}+x}{2}=\frac{36}{2}
Roinn an dá thaobh faoi 2.
x^{2}+\frac{1}{2}x=\frac{36}{2}
Má roinntear é faoi 2 cuirtear an iolrúchán faoi 2 ar ceal.
x^{2}+\frac{1}{2}x=18
Roinn 36 faoi 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=18+\left(\frac{1}{4}\right)^{2}
Roinn \frac{1}{2}, comhéifeacht an téarma x, faoi 2 chun \frac{1}{4} a fháil. Ansin suimigh uimhir chearnach \frac{1}{4} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+\frac{1}{2}x+\frac{1}{16}=18+\frac{1}{16}
Cearnaigh \frac{1}{4} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{289}{16}
Suimigh 18 le \frac{1}{16}?
\left(x+\frac{1}{4}\right)^{2}=\frac{289}{16}
Fachtóirigh x^{2}+\frac{1}{2}x+\frac{1}{16}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{289}{16}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+\frac{1}{4}=\frac{17}{4} x+\frac{1}{4}=-\frac{17}{4}
Simpligh.
x=4 x=-\frac{9}{2}
Bain \frac{1}{4} ón dá thaobh den chothromóid.