Réitigh do P.
P=-\frac{2^{a^{2}}}{5}+6a
Roinn
Cóipeáladh go dtí an ghearrthaisce
-30a+5P=-2^{a^{2}}
Bain 2^{a^{2}} ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
5P=-2^{a^{2}}+30a
Cuir 30a leis an dá thaobh.
5P=30a-2^{a^{2}}
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{5P}{5}=\frac{30a-2^{a^{2}}}{5}
Roinn an dá thaobh faoi 5.
P=\frac{30a-2^{a^{2}}}{5}
Má roinntear é faoi 5 cuirtear an iolrúchán faoi 5 ar ceal.
P=-\frac{2^{a^{2}}}{5}+6a
Roinn -2^{a^{2}}+30a faoi 5.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}