Réitigh do x.
x=\sqrt{970}+30\approx 61.144823005
x=30-\sqrt{970}\approx -1.144823005
Graf
Tráth na gCeist
Quadratic Equation
5 fadhbanna cosúil le:
18 = - \frac { 1 } { 5 } x ^ { 2 } + 12 x + 32
Roinn
Cóipeáladh go dtí an ghearrthaisce
-\frac{1}{5}x^{2}+12x+32=18
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
-\frac{1}{5}x^{2}+12x+32-18=0
Bain 18 ón dá thaobh.
-\frac{1}{5}x^{2}+12x+14=0
Dealaigh 18 ó 32 chun 14 a fháil.
x=\frac{-12±\sqrt{12^{2}-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -\frac{1}{5} in ionad a, 12 in ionad b, agus 14 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-\frac{1}{5}\right)\times 14}}{2\left(-\frac{1}{5}\right)}
Cearnóg 12.
x=\frac{-12±\sqrt{144+\frac{4}{5}\times 14}}{2\left(-\frac{1}{5}\right)}
Méadaigh -4 faoi -\frac{1}{5}.
x=\frac{-12±\sqrt{144+\frac{56}{5}}}{2\left(-\frac{1}{5}\right)}
Méadaigh \frac{4}{5} faoi 14.
x=\frac{-12±\sqrt{\frac{776}{5}}}{2\left(-\frac{1}{5}\right)}
Suimigh 144 le \frac{56}{5}?
x=\frac{-12±\frac{2\sqrt{970}}{5}}{2\left(-\frac{1}{5}\right)}
Tóg fréamh chearnach \frac{776}{5}.
x=\frac{-12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}}
Méadaigh 2 faoi -\frac{1}{5}.
x=\frac{\frac{2\sqrt{970}}{5}-12}{-\frac{2}{5}}
Réitigh an chothromóid x=\frac{-12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} nuair is ionann ± agus plus. Suimigh -12 le \frac{2\sqrt{970}}{5}?
x=30-\sqrt{970}
Roinn -12+\frac{2\sqrt{970}}{5} faoi -\frac{2}{5} trí -12+\frac{2\sqrt{970}}{5} a mhéadú faoi dheilín -\frac{2}{5}.
x=\frac{-\frac{2\sqrt{970}}{5}-12}{-\frac{2}{5}}
Réitigh an chothromóid x=\frac{-12±\frac{2\sqrt{970}}{5}}{-\frac{2}{5}} nuair is ionann ± agus míneas. Dealaigh \frac{2\sqrt{970}}{5} ó -12.
x=\sqrt{970}+30
Roinn -12-\frac{2\sqrt{970}}{5} faoi -\frac{2}{5} trí -12-\frac{2\sqrt{970}}{5} a mhéadú faoi dheilín -\frac{2}{5}.
x=30-\sqrt{970} x=\sqrt{970}+30
Tá an chothromóid réitithe anois.
-\frac{1}{5}x^{2}+12x+32=18
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
-\frac{1}{5}x^{2}+12x=18-32
Bain 32 ón dá thaobh.
-\frac{1}{5}x^{2}+12x=-14
Dealaigh 32 ó 18 chun -14 a fháil.
\frac{-\frac{1}{5}x^{2}+12x}{-\frac{1}{5}}=-\frac{14}{-\frac{1}{5}}
Iolraigh an dá thaobh faoi -5.
x^{2}+\frac{12}{-\frac{1}{5}}x=-\frac{14}{-\frac{1}{5}}
Má roinntear é faoi -\frac{1}{5} cuirtear an iolrúchán faoi -\frac{1}{5} ar ceal.
x^{2}-60x=-\frac{14}{-\frac{1}{5}}
Roinn 12 faoi -\frac{1}{5} trí 12 a mhéadú faoi dheilín -\frac{1}{5}.
x^{2}-60x=70
Roinn -14 faoi -\frac{1}{5} trí -14 a mhéadú faoi dheilín -\frac{1}{5}.
x^{2}-60x+\left(-30\right)^{2}=70+\left(-30\right)^{2}
Roinn -60, comhéifeacht an téarma x, faoi 2 chun -30 a fháil. Ansin suimigh uimhir chearnach -30 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-60x+900=70+900
Cearnóg -30.
x^{2}-60x+900=970
Suimigh 70 le 900?
\left(x-30\right)^{2}=970
Fachtóirigh x^{2}-60x+900. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-30\right)^{2}}=\sqrt{970}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-30=\sqrt{970} x-30=-\sqrt{970}
Simpligh.
x=\sqrt{970}+30 x=30-\sqrt{970}
Cuir 30 leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}