Réitigh do x.
x=-2
x=0
Graf
Tráth na gCeist
Polynomial
5 fadhbanna cosúil le:
16 x ^ { 2 } + 32 x = 0
Roinn
Cóipeáladh go dtí an ghearrthaisce
x\left(16x+32\right)=0
Fág x as an áireamh.
x=0 x=-2
Réitigh x=0 agus 16x+32=0 chun réitigh cothromóide a fháil.
16x^{2}+32x=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-32±\sqrt{32^{2}}}{2\times 16}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 16 in ionad a, 32 in ionad b, agus 0 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-32±32}{2\times 16}
Tóg fréamh chearnach 32^{2}.
x=\frac{-32±32}{32}
Méadaigh 2 faoi 16.
x=\frac{0}{32}
Réitigh an chothromóid x=\frac{-32±32}{32} nuair is ionann ± agus plus. Suimigh -32 le 32?
x=0
Roinn 0 faoi 32.
x=-\frac{64}{32}
Réitigh an chothromóid x=\frac{-32±32}{32} nuair is ionann ± agus míneas. Dealaigh 32 ó -32.
x=-2
Roinn -64 faoi 32.
x=0 x=-2
Tá an chothromóid réitithe anois.
16x^{2}+32x=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
\frac{16x^{2}+32x}{16}=\frac{0}{16}
Roinn an dá thaobh faoi 16.
x^{2}+\frac{32}{16}x=\frac{0}{16}
Má roinntear é faoi 16 cuirtear an iolrúchán faoi 16 ar ceal.
x^{2}+2x=\frac{0}{16}
Roinn 32 faoi 16.
x^{2}+2x=0
Roinn 0 faoi 16.
x^{2}+2x+1^{2}=1^{2}
Roinn 2, comhéifeacht an téarma x, faoi 2 chun 1 a fháil. Ansin suimigh uimhir chearnach 1 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+2x+1=1
Cearnóg 1.
\left(x+1\right)^{2}=1
Fachtóirigh x^{2}+2x+1. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+1=1 x+1=-1
Simpligh.
x=0 x=-2
Bain 1 ón dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}