Réitigh do x.
x=4
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
16-8x+x^{2}=0
Cuir x^{2} leis an dá thaobh.
x^{2}-8x+16=0
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=-8 ab=16
Chun an chothromóid a réiteach, úsáid an fhoirmle x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) chun x^{2}-8x+16 a fhachtóiriú. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,-16 -2,-8 -4,-4
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil a agus b araon diúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh 16.
-1-16=-17 -2-8=-10 -4-4=-8
Áirigh an tsuim do gach péire.
a=-4 b=-4
Is é an réiteach ná an péire a thugann an tsuim -8.
\left(x-4\right)\left(x-4\right)
Úsáid na luachanna atá ar eolas chun an slonn fachtóirithe \left(x+a\right)\left(x+b\right) a athscríobh.
\left(x-4\right)^{2}
Athscríobh é mar chearnóg dhéthéarmach.
x=4
Réitigh x-4=0 chun réiteach cothromóide a fháil.
16-8x+x^{2}=0
Cuir x^{2} leis an dá thaobh.
x^{2}-8x+16=0
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=-8 ab=1\times 16=16
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar x^{2}+ax+bx+16 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,-16 -2,-8 -4,-4
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil a agus b araon diúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh 16.
-1-16=-17 -2-8=-10 -4-4=-8
Áirigh an tsuim do gach péire.
a=-4 b=-4
Is é an réiteach ná an péire a thugann an tsuim -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Athscríobh x^{2}-8x+16 mar \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Fág x as an áireamh sa chead ghrúpa agus -4 sa dara grúpa.
\left(x-4\right)\left(x-4\right)
Fág an téarma coitianta x-4 as an áireamh ag úsáid airí dháiligh.
\left(x-4\right)^{2}
Athscríobh é mar chearnóg dhéthéarmach.
x=4
Réitigh x-4=0 chun réiteach cothromóide a fháil.
16-8x+x^{2}=0
Cuir x^{2} leis an dá thaobh.
x^{2}-8x+16=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, -8 in ionad b, agus 16 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Cearnóg -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Méadaigh -4 faoi 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Suimigh 64 le -64?
x=-\frac{-8}{2}
Tóg fréamh chearnach 0.
x=\frac{8}{2}
Tá 8 urchomhairleach le -8.
x=4
Roinn 8 faoi 2.
16-8x+x^{2}=0
Cuir x^{2} leis an dá thaobh.
-8x+x^{2}=-16
Bain 16 ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
x^{2}-8x=-16
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Roinn -8, comhéifeacht an téarma x, faoi 2 chun -4 a fháil. Ansin suimigh uimhir chearnach -4 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-8x+16=-16+16
Cearnóg -4.
x^{2}-8x+16=0
Suimigh -16 le 16?
\left(x-4\right)^{2}=0
Fachtóirigh x^{2}-8x+16. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-4=0 x-4=0
Simpligh.
x=4 x=4
Cuir 4 leis an dá thaobh den chothromóid.
x=4
Tá an chothromóid réitithe anois. Is ionann na réitigh.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}