Scipeáil chuig an bpríomhábhar
Fachtóirigh
Tick mark Image
Luacháil
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

n^{2}-8n+16
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=-8 ab=1\times 16=16
Déan an chothromóid a fhachtóiriú de réir na grúpála. Ní mór an chothromóid a athscríobh mar n^{2}+an+bn+16 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,-16 -2,-8 -4,-4
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b diúltach agus sin an fáth go bhfuil a agus b araon diúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh 16.
-1-16=-17 -2-8=-10 -4-4=-8
Áirigh an tsuim do gach péire.
a=-4 b=-4
Is é an réiteach ná an péire a thugann an tsuim -8.
\left(n^{2}-4n\right)+\left(-4n+16\right)
Athscríobh n^{2}-8n+16 mar \left(n^{2}-4n\right)+\left(-4n+16\right).
n\left(n-4\right)-4\left(n-4\right)
Fág n as an áireamh sa chead ghrúpa agus -4 sa dara grúpa.
\left(n-4\right)\left(n-4\right)
Fág an téarma coitianta n-4 as an áireamh ag úsáid airí dháiligh.
\left(n-4\right)^{2}
Athscríobh é mar chearnóg dhéthéarmach.
factor(n^{2}-8n+16)
Tá an tríthéarmach seo i bhfoirm cearnóige tríthéarmaí, méadaithe faoi fhachtóir coiteann b’fhéidir. Is féidir cearnóga tríthéarmacha a fhachtóiriú trí fhréamhacha cearnacha na dtéarmaí chun tosaigh agus na dtéarmaí chun deiridh a fháil.
\sqrt{16}=4
Faigh fréamh chearnach an téarma chun deiridh, 16.
\left(n-4\right)^{2}
Is ionann an chearnóg thríthéarmach agus cearnóg an déthéarmaigh arb é suim nó difríocht fhréamhacha cearnacha na dtéarmaí chun tosaigh agus chun deiridh, agus tá an comhartha dearbhaithe ag comhartha théarma láir na cearnóige tríthéarmaí.
n^{2}-8n+16=0
Is féidir an trasfhoirmiú ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) a úsáid chun luach iltéarmach cearnach a fhachtóiriú, nuair is réitigh iad x_{1} agus x_{2} ar an gcothromóid chearnach ax^{2}+bx+c=0.
n=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
n=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Cearnóg -8.
n=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Méadaigh -4 faoi 16.
n=\frac{-\left(-8\right)±\sqrt{0}}{2}
Suimigh 64 le -64?
n=\frac{-\left(-8\right)±0}{2}
Tóg fréamh chearnach 0.
n=\frac{8±0}{2}
Tá 8 urchomhairleach le -8.
n^{2}-8n+16=\left(n-4\right)\left(n-4\right)
Úsáid ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) chun an slonn bunaidh a fhachtóiriú. Cuir 4 in ionad x_{1} agus 4 in ionad x_{2}.