Scipeáil chuig an bpríomhábhar
Luacháil
Tick mark Image
Fairsingigh
Tick mark Image

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Fachtóirigh x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 1 faoi \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} agus \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Déan iolrúcháin in \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Cumaisc téarmaí comhchosúla in: x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Fairsingigh \left(x+y\right)\left(x-y\right)
1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Fachtóirigh x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Chun cothromóidí a shuimiú nó a dhealú, fairsingigh iad chun a n-ainmneoirí a mheaitseáil. Méadaigh 1 faoi \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Tá an t-ainmneoir céanna ag \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} agus \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} agus, mar sin, is féidir iad a dhealú trína n-uimhreoirí a dhealú.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Déan iolrúcháin in \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Cumaisc téarmaí comhchosúla in: x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Fairsingigh \left(x+y\right)\left(x-y\right)