Réitigh do T_0.
T_{0}=-\frac{375}{a\left(a-20\right)}
a\neq 20\text{ and }a\neq 0
Réitigh do a. (complex solution)
a=-\frac{5\left(\sqrt{T_{0}\left(4T_{0}-15\right)}-2T_{0}\right)}{T_{0}}
a=\frac{5\left(\sqrt{T_{0}\left(4T_{0}-15\right)}+2T_{0}\right)}{T_{0}}\text{, }T_{0}\neq 0
Réitigh do a.
a=-\frac{5\left(\sqrt{T_{0}\left(4T_{0}-15\right)}-2T_{0}\right)}{T_{0}}
a=\frac{5\left(\sqrt{T_{0}\left(4T_{0}-15\right)}+2T_{0}\right)}{T_{0}}\text{, }T_{0}<0\text{ or }T_{0}\geq \frac{15}{4}
Roinn
Cóipeáladh go dtí an ghearrthaisce
0.0048aT_{0}\left(20-a\right)=20\times 0.09
Méadaigh 0.12 agus 0.04 chun 0.0048 a fháil.
0.096aT_{0}-0.0048a^{2}T_{0}=20\times 0.09
Úsáid an t-airí dáileach chun 0.0048aT_{0} a mhéadú faoi 20-a.
0.096aT_{0}-0.0048a^{2}T_{0}=1.8
Méadaigh 20 agus 0.09 chun 1.8 a fháil.
\left(0.096a-0.0048a^{2}\right)T_{0}=1.8
Comhcheangail na téarmaí ar fad ina bhfuil T_{0}.
\left(-\frac{3a^{2}}{625}+\frac{12a}{125}\right)T_{0}=1.8
Tá an chothromóid i bhfoirm chaighdeánach.
\frac{\left(-\frac{3a^{2}}{625}+\frac{12a}{125}\right)T_{0}}{-\frac{3a^{2}}{625}+\frac{12a}{125}}=\frac{1.8}{-\frac{3a^{2}}{625}+\frac{12a}{125}}
Roinn an dá thaobh faoi 0.096a-0.0048a^{2}.
T_{0}=\frac{1.8}{-\frac{3a^{2}}{625}+\frac{12a}{125}}
Má roinntear é faoi 0.096a-0.0048a^{2} cuirtear an iolrúchán faoi 0.096a-0.0048a^{2} ar ceal.
T_{0}=\frac{9}{5a\left(-\frac{3a}{625}+0.096\right)}
Roinn 1.8 faoi 0.096a-0.0048a^{2}.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}