Réitigh do x. (complex solution)
x=50+50\sqrt{223}i\approx 50+746.659226153i
x=-50\sqrt{223}i+50\approx 50-746.659226153i
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
x^{2}-100x+560000=0
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 560000}}{2}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir 1 in ionad a, -100 in ionad b, agus 560000 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 560000}}{2}
Cearnóg -100.
x=\frac{-\left(-100\right)±\sqrt{10000-2240000}}{2}
Méadaigh -4 faoi 560000.
x=\frac{-\left(-100\right)±\sqrt{-2230000}}{2}
Suimigh 10000 le -2240000?
x=\frac{-\left(-100\right)±100\sqrt{223}i}{2}
Tóg fréamh chearnach -2230000.
x=\frac{100±100\sqrt{223}i}{2}
Tá 100 urchomhairleach le -100.
x=\frac{100+100\sqrt{223}i}{2}
Réitigh an chothromóid x=\frac{100±100\sqrt{223}i}{2} nuair is ionann ± agus plus. Suimigh 100 le 100i\sqrt{223}?
x=50+50\sqrt{223}i
Roinn 100+100i\sqrt{223} faoi 2.
x=\frac{-100\sqrt{223}i+100}{2}
Réitigh an chothromóid x=\frac{100±100\sqrt{223}i}{2} nuair is ionann ± agus míneas. Dealaigh 100i\sqrt{223} ó 100.
x=-50\sqrt{223}i+50
Roinn 100-100i\sqrt{223} faoi 2.
x=50+50\sqrt{223}i x=-50\sqrt{223}i+50
Tá an chothromóid réitithe anois.
x^{2}-100x+560000=0
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
x^{2}-100x=-560000
Bain 560000 ón dá thaobh. Is ionann rud ar bith a dhealaítear ó nialas agus a shéanadh.
x^{2}-100x+\left(-50\right)^{2}=-560000+\left(-50\right)^{2}
Roinn -100, comhéifeacht an téarma x, faoi 2 chun -50 a fháil. Ansin suimigh uimhir chearnach -50 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-100x+2500=-560000+2500
Cearnóg -50.
x^{2}-100x+2500=-557500
Suimigh -560000 le 2500?
\left(x-50\right)^{2}=-557500
Fachtóirigh x^{2}-100x+2500. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-50\right)^{2}}=\sqrt{-557500}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-50=50\sqrt{223}i x-50=-50\sqrt{223}i
Simpligh.
x=50+50\sqrt{223}i x=-50\sqrt{223}i+50
Cuir 50 leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}