Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Ríomh cumhacht 10 de -6 agus faigh \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Méadaigh 9 agus \frac{1}{1000000} chun \frac{9}{1000000} a fháil.
x=\frac{-45±\sqrt{45^{2}-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -500000 in ionad a, 45 in ionad b, agus -\frac{9}{1000000} in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Cearnóg 45.
x=\frac{-45±\sqrt{2025+2000000\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Méadaigh -4 faoi -500000.
x=\frac{-45±\sqrt{2025-18}}{2\left(-500000\right)}
Méadaigh 2000000 faoi -\frac{9}{1000000}.
x=\frac{-45±\sqrt{2007}}{2\left(-500000\right)}
Suimigh 2025 le -18?
x=\frac{-45±3\sqrt{223}}{2\left(-500000\right)}
Tóg fréamh chearnach 2007.
x=\frac{-45±3\sqrt{223}}{-1000000}
Méadaigh 2 faoi -500000.
x=\frac{3\sqrt{223}-45}{-1000000}
Réitigh an chothromóid x=\frac{-45±3\sqrt{223}}{-1000000} nuair is ionann ± agus plus. Suimigh -45 le 3\sqrt{223}?
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Roinn -45+3\sqrt{223} faoi -1000000.
x=\frac{-3\sqrt{223}-45}{-1000000}
Réitigh an chothromóid x=\frac{-45±3\sqrt{223}}{-1000000} nuair is ionann ± agus míneas. Dealaigh 3\sqrt{223} ó -45.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Roinn -45-3\sqrt{223} faoi -1000000.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Tá an chothromóid réitithe anois.
-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Ríomh cumhacht 10 de -6 agus faigh \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Méadaigh 9 agus \frac{1}{1000000} chun \frac{9}{1000000} a fháil.
-500000x^{2}+45x=\frac{9}{1000000}
Cuir \frac{9}{1000000} leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
\frac{-500000x^{2}+45x}{-500000}=\frac{\frac{9}{1000000}}{-500000}
Roinn an dá thaobh faoi -500000.
x^{2}+\frac{45}{-500000}x=\frac{\frac{9}{1000000}}{-500000}
Má roinntear é faoi -500000 cuirtear an iolrúchán faoi -500000 ar ceal.
x^{2}-\frac{9}{100000}x=\frac{\frac{9}{1000000}}{-500000}
Laghdaigh an codán \frac{45}{-500000} chuig na téarmaí is ísle trí 5 a bhaint agus a chealú.
x^{2}-\frac{9}{100000}x=-\frac{9}{500000000000}
Roinn \frac{9}{1000000} faoi -500000.
x^{2}-\frac{9}{100000}x+\left(-\frac{9}{200000}\right)^{2}=-\frac{9}{500000000000}+\left(-\frac{9}{200000}\right)^{2}
Roinn -\frac{9}{100000}, comhéifeacht an téarma x, faoi 2 chun -\frac{9}{200000} a fháil. Ansin suimigh uimhir chearnach -\frac{9}{200000} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=-\frac{9}{500000000000}+\frac{81}{40000000000}
Cearnaigh -\frac{9}{200000} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=\frac{2007}{1000000000000}
Suimigh -\frac{9}{500000000000} le \frac{81}{40000000000} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
\left(x-\frac{9}{200000}\right)^{2}=\frac{2007}{1000000000000}
Fachtóirigh x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{200000}\right)^{2}}=\sqrt{\frac{2007}{1000000000000}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{9}{200000}=\frac{3\sqrt{223}}{1000000} x-\frac{9}{200000}=-\frac{3\sqrt{223}}{1000000}
Simpligh.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Cuir \frac{9}{200000} leis an dá thaobh den chothromóid.