Réitigh do x.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}\approx 0.0000898
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}\approx 0.0000002
Graf
Tráth na gCeist
Quadratic Equation
5 fadhbanna cosúil le:
-500000 { x }^{ 2 } +45x-9 \times { 10 }^{ -6 } = 0
Roinn
Cóipeáladh go dtí an ghearrthaisce
-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Ríomh cumhacht 10 de -6 agus faigh \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Méadaigh 9 agus \frac{1}{1000000} chun \frac{9}{1000000} a fháil.
x=\frac{-45±\sqrt{45^{2}-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -500000 in ionad a, 45 in ionad b, agus -\frac{9}{1000000} in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Cearnóg 45.
x=\frac{-45±\sqrt{2025+2000000\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Méadaigh -4 faoi -500000.
x=\frac{-45±\sqrt{2025-18}}{2\left(-500000\right)}
Méadaigh 2000000 faoi -\frac{9}{1000000}.
x=\frac{-45±\sqrt{2007}}{2\left(-500000\right)}
Suimigh 2025 le -18?
x=\frac{-45±3\sqrt{223}}{2\left(-500000\right)}
Tóg fréamh chearnach 2007.
x=\frac{-45±3\sqrt{223}}{-1000000}
Méadaigh 2 faoi -500000.
x=\frac{3\sqrt{223}-45}{-1000000}
Réitigh an chothromóid x=\frac{-45±3\sqrt{223}}{-1000000} nuair is ionann ± agus plus. Suimigh -45 le 3\sqrt{223}?
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Roinn -45+3\sqrt{223} faoi -1000000.
x=\frac{-3\sqrt{223}-45}{-1000000}
Réitigh an chothromóid x=\frac{-45±3\sqrt{223}}{-1000000} nuair is ionann ± agus míneas. Dealaigh 3\sqrt{223} ó -45.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Roinn -45-3\sqrt{223} faoi -1000000.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Tá an chothromóid réitithe anois.
-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Ríomh cumhacht 10 de -6 agus faigh \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Méadaigh 9 agus \frac{1}{1000000} chun \frac{9}{1000000} a fháil.
-500000x^{2}+45x=\frac{9}{1000000}
Cuir \frac{9}{1000000} leis an dá thaobh. Is ionann rud ar bith móide nialas agus a shuim féin.
\frac{-500000x^{2}+45x}{-500000}=\frac{\frac{9}{1000000}}{-500000}
Roinn an dá thaobh faoi -500000.
x^{2}+\frac{45}{-500000}x=\frac{\frac{9}{1000000}}{-500000}
Má roinntear é faoi -500000 cuirtear an iolrúchán faoi -500000 ar ceal.
x^{2}-\frac{9}{100000}x=\frac{\frac{9}{1000000}}{-500000}
Laghdaigh an codán \frac{45}{-500000} chuig na téarmaí is ísle trí 5 a bhaint agus a chealú.
x^{2}-\frac{9}{100000}x=-\frac{9}{500000000000}
Roinn \frac{9}{1000000} faoi -500000.
x^{2}-\frac{9}{100000}x+\left(-\frac{9}{200000}\right)^{2}=-\frac{9}{500000000000}+\left(-\frac{9}{200000}\right)^{2}
Roinn -\frac{9}{100000}, comhéifeacht an téarma x, faoi 2 chun -\frac{9}{200000} a fháil. Ansin suimigh uimhir chearnach -\frac{9}{200000} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=-\frac{9}{500000000000}+\frac{81}{40000000000}
Cearnaigh -\frac{9}{200000} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=\frac{2007}{1000000000000}
Suimigh -\frac{9}{500000000000} le \frac{81}{40000000000} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
\left(x-\frac{9}{200000}\right)^{2}=\frac{2007}{1000000000000}
Fachtóirigh x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{200000}\right)^{2}}=\sqrt{\frac{2007}{1000000000000}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{9}{200000}=\frac{3\sqrt{223}}{1000000} x-\frac{9}{200000}=-\frac{3\sqrt{223}}{1000000}
Simpligh.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Cuir \frac{9}{200000} leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}