Réitigh do x.
x = -\frac{14}{5} = -2\frac{4}{5} = -2.8
Graf
Roinn
Cóipeáladh go dtí an ghearrthaisce
-4x-8+3\left(x-1\right)-2=4\left(x-2\right)+9
Úsáid an t-airí dáileach chun -4 a mhéadú faoi x+2.
-4x-8+3x-3-2=4\left(x-2\right)+9
Úsáid an t-airí dáileach chun 3 a mhéadú faoi x-1.
-x-8-3-2=4\left(x-2\right)+9
Comhcheangail -4x agus 3x chun -x a fháil.
-x-11-2=4\left(x-2\right)+9
Dealaigh 3 ó -8 chun -11 a fháil.
-x-13=4\left(x-2\right)+9
Dealaigh 2 ó -11 chun -13 a fháil.
-x-13=4x-8+9
Úsáid an t-airí dáileach chun 4 a mhéadú faoi x-2.
-x-13=4x+1
Suimigh -8 agus 9 chun 1 a fháil.
-x-13-4x=1
Bain 4x ón dá thaobh.
-5x-13=1
Comhcheangail -x agus -4x chun -5x a fháil.
-5x=1+13
Cuir 13 leis an dá thaobh.
-5x=14
Suimigh 1 agus 13 chun 14 a fháil.
x=\frac{14}{-5}
Roinn an dá thaobh faoi -5.
x=-\frac{14}{5}
Is féidir an codán \frac{14}{-5} a athscríobh mar -\frac{14}{5} ach an comhartha diúltach a bhaint.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}