Réitigh do x.
x=-1
x=4
Graf
Tráth na gCeist
Polynomial
-4=x+2x- { x }^{ 2 }
Roinn
Cóipeáladh go dtí an ghearrthaisce
-4=3x-x^{2}
Comhcheangail x agus 2x chun 3x a fháil.
3x-x^{2}=-4
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
3x-x^{2}+4=0
Cuir 4 leis an dá thaobh.
-x^{2}+3x+4=0
Atheagraigh an t-iltéarmach lena chur i bhfoirm chaighdeánach. Cuir na téarmaí in ord ón gcumhacht is airde go dtí an chumhacht is ísle.
a+b=3 ab=-4=-4
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar -x^{2}+ax+bx+4 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,4 -2,2
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -4.
-1+4=3 -2+2=0
Áirigh an tsuim do gach péire.
a=4 b=-1
Is é an réiteach ná an péire a thugann an tsuim 3.
\left(-x^{2}+4x\right)+\left(-x+4\right)
Athscríobh -x^{2}+3x+4 mar \left(-x^{2}+4x\right)+\left(-x+4\right).
-x\left(x-4\right)-\left(x-4\right)
Fág -x as an áireamh sa chead ghrúpa agus -1 sa dara grúpa.
\left(x-4\right)\left(-x-1\right)
Fág an téarma coitianta x-4 as an áireamh ag úsáid airí dháiligh.
x=4 x=-1
Réitigh x-4=0 agus -x-1=0 chun réitigh cothromóide a fháil.
-4=3x-x^{2}
Comhcheangail x agus 2x chun 3x a fháil.
3x-x^{2}=-4
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
3x-x^{2}+4=0
Cuir 4 leis an dá thaobh.
-x^{2}+3x+4=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 4}}{2\left(-1\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -1 in ionad a, 3 in ionad b, agus 4 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 4}}{2\left(-1\right)}
Cearnóg 3.
x=\frac{-3±\sqrt{9+4\times 4}}{2\left(-1\right)}
Méadaigh -4 faoi -1.
x=\frac{-3±\sqrt{9+16}}{2\left(-1\right)}
Méadaigh 4 faoi 4.
x=\frac{-3±\sqrt{25}}{2\left(-1\right)}
Suimigh 9 le 16?
x=\frac{-3±5}{2\left(-1\right)}
Tóg fréamh chearnach 25.
x=\frac{-3±5}{-2}
Méadaigh 2 faoi -1.
x=\frac{2}{-2}
Réitigh an chothromóid x=\frac{-3±5}{-2} nuair is ionann ± agus plus. Suimigh -3 le 5?
x=-1
Roinn 2 faoi -2.
x=-\frac{8}{-2}
Réitigh an chothromóid x=\frac{-3±5}{-2} nuair is ionann ± agus míneas. Dealaigh 5 ó -3.
x=4
Roinn -8 faoi -2.
x=-1 x=4
Tá an chothromóid réitithe anois.
-4=3x-x^{2}
Comhcheangail x agus 2x chun 3x a fháil.
3x-x^{2}=-4
Athraigh na taobhanna ionas go mbeidh na téarmaí inathraitheacha ar fad ar an taobh clé.
-x^{2}+3x=-4
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
\frac{-x^{2}+3x}{-1}=-\frac{4}{-1}
Roinn an dá thaobh faoi -1.
x^{2}+\frac{3}{-1}x=-\frac{4}{-1}
Má roinntear é faoi -1 cuirtear an iolrúchán faoi -1 ar ceal.
x^{2}-3x=-\frac{4}{-1}
Roinn 3 faoi -1.
x^{2}-3x=4
Roinn -4 faoi -1.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Roinn -3, comhéifeacht an téarma x, faoi 2 chun -\frac{3}{2} a fháil. Ansin suimigh uimhir chearnach -\frac{3}{2} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Cearnaigh -\frac{3}{2} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Suimigh 4 le \frac{9}{4}?
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Fachtóirigh x^{2}-3x+\frac{9}{4}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Simpligh.
x=4 x=-1
Cuir \frac{3}{2} leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}