Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

-1800x^{2}-62000000x-600000000=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-\left(-62000000\right)±\sqrt{\left(-62000000\right)^{2}-4\left(-1800\right)\left(-600000000\right)}}{2\left(-1800\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -1800 in ionad a, -62000000 in ionad b, agus -600000000 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-62000000\right)±\sqrt{3844000000000000-4\left(-1800\right)\left(-600000000\right)}}{2\left(-1800\right)}
Cearnóg -62000000.
x=\frac{-\left(-62000000\right)±\sqrt{3844000000000000+7200\left(-600000000\right)}}{2\left(-1800\right)}
Méadaigh -4 faoi -1800.
x=\frac{-\left(-62000000\right)±\sqrt{3844000000000000-4320000000000}}{2\left(-1800\right)}
Méadaigh 7200 faoi -600000000.
x=\frac{-\left(-62000000\right)±\sqrt{3839680000000000}}{2\left(-1800\right)}
Suimigh 3844000000000000 le -4320000000000?
x=\frac{-\left(-62000000\right)±5200000\sqrt{142}}{2\left(-1800\right)}
Tóg fréamh chearnach 3839680000000000.
x=\frac{62000000±5200000\sqrt{142}}{2\left(-1800\right)}
Tá 62000000 urchomhairleach le -62000000.
x=\frac{62000000±5200000\sqrt{142}}{-3600}
Méadaigh 2 faoi -1800.
x=\frac{5200000\sqrt{142}+62000000}{-3600}
Réitigh an chothromóid x=\frac{62000000±5200000\sqrt{142}}{-3600} nuair is ionann ± agus plus. Suimigh 62000000 le 5200000\sqrt{142}?
x=\frac{-13000\sqrt{142}-155000}{9}
Roinn 62000000+5200000\sqrt{142} faoi -3600.
x=\frac{62000000-5200000\sqrt{142}}{-3600}
Réitigh an chothromóid x=\frac{62000000±5200000\sqrt{142}}{-3600} nuair is ionann ± agus míneas. Dealaigh 5200000\sqrt{142} ó 62000000.
x=\frac{13000\sqrt{142}-155000}{9}
Roinn 62000000-5200000\sqrt{142} faoi -3600.
x=\frac{-13000\sqrt{142}-155000}{9} x=\frac{13000\sqrt{142}-155000}{9}
Tá an chothromóid réitithe anois.
-1800x^{2}-62000000x-600000000=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
-1800x^{2}-62000000x-600000000-\left(-600000000\right)=-\left(-600000000\right)
Cuir 600000000 leis an dá thaobh den chothromóid.
-1800x^{2}-62000000x=-\left(-600000000\right)
Má dhealaítear -600000000 uaidh féin faightear 0.
-1800x^{2}-62000000x=600000000
Dealaigh -600000000 ó 0.
\frac{-1800x^{2}-62000000x}{-1800}=\frac{600000000}{-1800}
Roinn an dá thaobh faoi -1800.
x^{2}+\left(-\frac{62000000}{-1800}\right)x=\frac{600000000}{-1800}
Má roinntear é faoi -1800 cuirtear an iolrúchán faoi -1800 ar ceal.
x^{2}+\frac{310000}{9}x=\frac{600000000}{-1800}
Laghdaigh an codán \frac{-62000000}{-1800} chuig na téarmaí is ísle trí 200 a bhaint agus a chealú.
x^{2}+\frac{310000}{9}x=-\frac{1000000}{3}
Laghdaigh an codán \frac{600000000}{-1800} chuig na téarmaí is ísle trí 600 a bhaint agus a chealú.
x^{2}+\frac{310000}{9}x+\left(\frac{155000}{9}\right)^{2}=-\frac{1000000}{3}+\left(\frac{155000}{9}\right)^{2}
Roinn \frac{310000}{9}, comhéifeacht an téarma x, faoi 2 chun \frac{155000}{9} a fháil. Ansin suimigh uimhir chearnach \frac{155000}{9} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}+\frac{310000}{9}x+\frac{24025000000}{81}=-\frac{1000000}{3}+\frac{24025000000}{81}
Cearnaigh \frac{155000}{9} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}+\frac{310000}{9}x+\frac{24025000000}{81}=\frac{23998000000}{81}
Suimigh -\frac{1000000}{3} le \frac{24025000000}{81} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
\left(x+\frac{155000}{9}\right)^{2}=\frac{23998000000}{81}
Fachtóirigh x^{2}+\frac{310000}{9}x+\frac{24025000000}{81}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{155000}{9}\right)^{2}}=\sqrt{\frac{23998000000}{81}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x+\frac{155000}{9}=\frac{13000\sqrt{142}}{9} x+\frac{155000}{9}=-\frac{13000\sqrt{142}}{9}
Simpligh.
x=\frac{13000\sqrt{142}-155000}{9} x=\frac{-13000\sqrt{142}-155000}{9}
Bain \frac{155000}{9} ón dá thaobh den chothromóid.