Réitigh do x.
x=-3
x=5
Graf
Tráth na gCeist
Polynomial
- x ^ { 2 } + 2 x + 15 = 0
Roinn
Cóipeáladh go dtí an ghearrthaisce
a+b=2 ab=-15=-15
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar -x^{2}+ax+bx+15 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
-1,15 -3,5
Tá ab diúltach agus sin an fáth go bhfuil comharthaí urchomhairleacha ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil luach uimhriúil níos mó ag an uimhir dhearfach ná ag an uimhir dhiúltach. Liostaigh na péirí slánuimhreach ar fad a thugann an toradh -15.
-1+15=14 -3+5=2
Áirigh an tsuim do gach péire.
a=5 b=-3
Is é an réiteach ná an péire a thugann an tsuim 2.
\left(-x^{2}+5x\right)+\left(-3x+15\right)
Athscríobh -x^{2}+2x+15 mar \left(-x^{2}+5x\right)+\left(-3x+15\right).
-x\left(x-5\right)-3\left(x-5\right)
Fág -x as an áireamh sa chead ghrúpa agus -3 sa dara grúpa.
\left(x-5\right)\left(-x-3\right)
Fág an téarma coitianta x-5 as an áireamh ag úsáid airí dháiligh.
x=5 x=-3
Réitigh x-5=0 agus -x-3=0 chun réitigh cothromóide a fháil.
-x^{2}+2x+15=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -1 in ionad a, 2 in ionad b, agus 15 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 15}}{2\left(-1\right)}
Cearnóg 2.
x=\frac{-2±\sqrt{4+4\times 15}}{2\left(-1\right)}
Méadaigh -4 faoi -1.
x=\frac{-2±\sqrt{4+60}}{2\left(-1\right)}
Méadaigh 4 faoi 15.
x=\frac{-2±\sqrt{64}}{2\left(-1\right)}
Suimigh 4 le 60?
x=\frac{-2±8}{2\left(-1\right)}
Tóg fréamh chearnach 64.
x=\frac{-2±8}{-2}
Méadaigh 2 faoi -1.
x=\frac{6}{-2}
Réitigh an chothromóid x=\frac{-2±8}{-2} nuair is ionann ± agus plus. Suimigh -2 le 8?
x=-3
Roinn 6 faoi -2.
x=-\frac{10}{-2}
Réitigh an chothromóid x=\frac{-2±8}{-2} nuair is ionann ± agus míneas. Dealaigh 8 ó -2.
x=5
Roinn -10 faoi -2.
x=-3 x=5
Tá an chothromóid réitithe anois.
-x^{2}+2x+15=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
-x^{2}+2x+15-15=-15
Bain 15 ón dá thaobh den chothromóid.
-x^{2}+2x=-15
Má dhealaítear 15 uaidh féin faightear 0.
\frac{-x^{2}+2x}{-1}=-\frac{15}{-1}
Roinn an dá thaobh faoi -1.
x^{2}+\frac{2}{-1}x=-\frac{15}{-1}
Má roinntear é faoi -1 cuirtear an iolrúchán faoi -1 ar ceal.
x^{2}-2x=-\frac{15}{-1}
Roinn 2 faoi -1.
x^{2}-2x=15
Roinn -15 faoi -1.
x^{2}-2x+1=15+1
Roinn -2, comhéifeacht an téarma x, faoi 2 chun -1 a fháil. Ansin suimigh uimhir chearnach -1 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-2x+1=16
Suimigh 15 le 1?
\left(x-1\right)^{2}=16
Fachtóirigh x^{2}-2x+1. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-1=4 x-1=-4
Simpligh.
x=5 x=-3
Cuir 1 leis an dá thaobh den chothromóid.
Samplaí
Cothromóid chearnach
{ x } ^ { 2 } - 4 x - 5 = 0
Triantánacht
4 \sin \theta \cos \theta = 2 \sin \theta
Cothromóid líneach
y = 3x + 4
Uimhríocht
699 * 533
Maitrís
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Cothromóid chomhuaineach
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Difreáil
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Comhtháthú
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Teorainneacha
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}