Scipeáil chuig an bpríomhábhar
Réitigh do x. (complex solution)
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

-3x^{2}+5x-4=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-5±\sqrt{5^{2}-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -3 in ionad a, 5 in ionad b, agus -4 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-3\right)\left(-4\right)}}{2\left(-3\right)}
Cearnóg 5.
x=\frac{-5±\sqrt{25+12\left(-4\right)}}{2\left(-3\right)}
Méadaigh -4 faoi -3.
x=\frac{-5±\sqrt{25-48}}{2\left(-3\right)}
Méadaigh 12 faoi -4.
x=\frac{-5±\sqrt{-23}}{2\left(-3\right)}
Suimigh 25 le -48?
x=\frac{-5±\sqrt{23}i}{2\left(-3\right)}
Tóg fréamh chearnach -23.
x=\frac{-5±\sqrt{23}i}{-6}
Méadaigh 2 faoi -3.
x=\frac{-5+\sqrt{23}i}{-6}
Réitigh an chothromóid x=\frac{-5±\sqrt{23}i}{-6} nuair is ionann ± agus plus. Suimigh -5 le i\sqrt{23}?
x=\frac{-\sqrt{23}i+5}{6}
Roinn -5+i\sqrt{23} faoi -6.
x=\frac{-\sqrt{23}i-5}{-6}
Réitigh an chothromóid x=\frac{-5±\sqrt{23}i}{-6} nuair is ionann ± agus míneas. Dealaigh i\sqrt{23} ó -5.
x=\frac{5+\sqrt{23}i}{6}
Roinn -5-i\sqrt{23} faoi -6.
x=\frac{-\sqrt{23}i+5}{6} x=\frac{5+\sqrt{23}i}{6}
Tá an chothromóid réitithe anois.
-3x^{2}+5x-4=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
-3x^{2}+5x-4-\left(-4\right)=-\left(-4\right)
Cuir 4 leis an dá thaobh den chothromóid.
-3x^{2}+5x=-\left(-4\right)
Má dhealaítear -4 uaidh féin faightear 0.
-3x^{2}+5x=4
Dealaigh -4 ó 0.
\frac{-3x^{2}+5x}{-3}=\frac{4}{-3}
Roinn an dá thaobh faoi -3.
x^{2}+\frac{5}{-3}x=\frac{4}{-3}
Má roinntear é faoi -3 cuirtear an iolrúchán faoi -3 ar ceal.
x^{2}-\frac{5}{3}x=\frac{4}{-3}
Roinn 5 faoi -3.
x^{2}-\frac{5}{3}x=-\frac{4}{3}
Roinn 4 faoi -3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=-\frac{4}{3}+\left(-\frac{5}{6}\right)^{2}
Roinn -\frac{5}{3}, comhéifeacht an téarma x, faoi 2 chun -\frac{5}{6} a fháil. Ansin suimigh uimhir chearnach -\frac{5}{6} leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{4}{3}+\frac{25}{36}
Cearnaigh -\frac{5}{6} trí uimhreoir agus ainmneoir an chodáin a chearnú.
x^{2}-\frac{5}{3}x+\frac{25}{36}=-\frac{23}{36}
Suimigh -\frac{4}{3} le \frac{25}{36} trí chomhainmneoir a fháil agus na huimhreoirí a shuimiú. Laghdaigh an codán ansin go dtí na téarmaí is ísle más féidir.
\left(x-\frac{5}{6}\right)^{2}=-\frac{23}{36}
Fachtóirigh x^{2}-\frac{5}{3}x+\frac{25}{36}. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{-\frac{23}{36}}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-\frac{5}{6}=\frac{\sqrt{23}i}{6} x-\frac{5}{6}=-\frac{\sqrt{23}i}{6}
Simpligh.
x=\frac{5+\sqrt{23}i}{6} x=\frac{-\sqrt{23}i+5}{6}
Cuir \frac{5}{6} leis an dá thaobh den chothromóid.