Scipeáil chuig an bpríomhábhar
Réitigh do x.
Tick mark Image
Graf

Fadhbanna den chineál céanna ó Chuardach Gréasáin

Roinn

a+b=2 ab=-\left(-1\right)=1
Chun an chothromóid a réiteach, déan an taobh clé a fhachtóiriú de réir na grúpála. Ní mór an taobh clé a athscríobh mar -x^{2}+ax+bx-1 ar dtús. Chun a agus b a fháil, cumraigh córas lena réiteach.
a=1 b=1
Tá ab dearfach agus sin an fáth go bhfuil an comhartha céanna ag a agus b. Tá a+b dearfach agus sin an fáth go bhfuil a agus b araon dearfach. Is é an péire sin réiteach an chórais.
\left(-x^{2}+x\right)+\left(x-1\right)
Athscríobh -x^{2}+2x-1 mar \left(-x^{2}+x\right)+\left(x-1\right).
-x\left(x-1\right)+x-1
Fág -x as an áireamh in -x^{2}+x.
\left(x-1\right)\left(-x+1\right)
Fág an téarma coitianta x-1 as an áireamh ag úsáid airí dháiligh.
x=1 x=1
Réitigh x-1=0 agus -x+1=0 chun réitigh cothromóide a fháil.
-x^{2}+2x-1=0
Is féidir gach cothromóid san fhoirm ax^{2}+bx+c=0 a réiteach ag baint úsáid as an bhfoirmle chearnach : \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Tugann an fhoirmle chearnach dhá réiteach, ceann amháin nuair is suimiú é ± agus ceann eile nuair is dealú é.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Tá an chothromóid seo i bhfoirm chaighdeánach: ax^{2}+bx+c=0. Cuir -1 in ionad a, 2 in ionad b, agus -1 in ionad c san fhoirmle chearnach, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Cearnóg 2.
x=\frac{-2±\sqrt{4+4\left(-1\right)}}{2\left(-1\right)}
Méadaigh -4 faoi -1.
x=\frac{-2±\sqrt{4-4}}{2\left(-1\right)}
Méadaigh 4 faoi -1.
x=\frac{-2±\sqrt{0}}{2\left(-1\right)}
Suimigh 4 le -4?
x=-\frac{2}{2\left(-1\right)}
Tóg fréamh chearnach 0.
x=-\frac{2}{-2}
Méadaigh 2 faoi -1.
x=1
Roinn -2 faoi -2.
-x^{2}+2x-1=0
Is féidir cothromóidí cearnach cosúil leis an gceann seo a réitigh tríd an gcearnóg a chomhlánú. Chun an chearnóg a chomhlánú, ní mór don chothromóid a bheith san fhoirm x^{2}+bx=c ar dtús.
-x^{2}+2x-1-\left(-1\right)=-\left(-1\right)
Cuir 1 leis an dá thaobh den chothromóid.
-x^{2}+2x=-\left(-1\right)
Má dhealaítear -1 uaidh féin faightear 0.
-x^{2}+2x=1
Dealaigh -1 ó 0.
\frac{-x^{2}+2x}{-1}=\frac{1}{-1}
Roinn an dá thaobh faoi -1.
x^{2}+\frac{2}{-1}x=\frac{1}{-1}
Má roinntear é faoi -1 cuirtear an iolrúchán faoi -1 ar ceal.
x^{2}-2x=\frac{1}{-1}
Roinn 2 faoi -1.
x^{2}-2x=-1
Roinn 1 faoi -1.
x^{2}-2x+1=-1+1
Roinn -2, comhéifeacht an téarma x, faoi 2 chun -1 a fháil. Ansin suimigh uimhir chearnach -1 leis an dá thaobh den chothromóid. Déanann an chéim seo slánchearnóg de thaobh clé na cothromóide.
x^{2}-2x+1=0
Suimigh -1 le 1?
\left(x-1\right)^{2}=0
Fachtóirigh x^{2}-2x+1. Go ginearálta, nuair x^{2}+bx+c cearnóg fhoirfe é, is féidir é a fhachtóiriú i gcónaí mar \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{0}
Tóg fréamh chearnach an dá thaobh den chothromóid.
x-1=0 x-1=0
Simpligh.
x=1 x=1
Cuir 1 leis an dá thaobh den chothromóid.
x=1
Tá an chothromóid réitithe anois. Is ionann na réitigh.